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1. I N T R O D U C T I O N  

In [1-6], we presented a computational procedure defined as the optimal derivative of a nonlinear 

ODE. This procedure is a global approximation conceived initially to associate a linear equation 

to a nonlinear ODE in the neighborhood of a steady state, in particular when the nonlinearity is 

not smooth enough, near the steady state. 

The aim of this paper is to construct an approximation of the solution of a nonlinear ODE 

based on the optimal derivative. This approximation will be called an "optimal approximation". 

In fact, we are interested in the numerical resolution of the following initial value problem: 

dx 
dt F(x), 

x(0) = x0, 
(1) 

for t E [0,T], x E ]R '~. F is defined on an open subset 12 of R '~ with values in R n. 

We consider a subdivision 0 < tl < .-. < ti < ti+l < ""  < tn = T of the interval [0, T], and 

set Ti+l = ti+l -- t~. 
Many methods for solving this problem already exist (Euler, Runge-Kut ta , . . .  ). The idea is 

to approach the nonlinear function with its successive derivatives. 

What  we propose here is to replace F by a linear map in the sense of the optimal derivative on 
each of the intervals of the subdivision. This permits the calculation of an approximation ~ of 

the solution at each point t~ of the subdivision. An approximation ~ of the solution is deduced 
by linear interpolation between ti and ti+l. This approximation does not use the value of the 

solution of the nonlinear equation, and hence, it is based on the computational value of the 

approximation of the solution using the optimal linear equation. 

Now, we give a brief overview of the contents. The next two sections are devoted to prelim- 
inaries and a quick reminder of the optimal procedure. Then, the approximation procedure is 

*Permanent address: Institut de Sciences Exactes, Bp. 119, Universit~ de Tlemcen, 13000 Alg~rie. 

Typeset by .AAfS-TEX 

21 



22 T. BENOUAZ AND O. ARINO 

presented and an error estimate is obtained, first in the case when F is dissipative, then, in 
a general situation. Finally, we illustrate the applicability of the procedure through a simple 
example. 

2. P R E L I M I N A R I E S  

Starting with 3(0) = ~0 an approximation of x(0) = x0, we are in reality going to solve the 
following problem: 

d3 
dt F(~), 

~(o) = 30. 

(2) 

For this, we shall assume: 

(H1) IIF(x)]l _< M, M > 0, 
(H2) F "y-Lipschitz continuous, and 
(H3) there exists M2 < +c~ such that  HF(y + x ) -  F ( x ) -  DF(x )y  H < M2HyH 2, for all x, y e R n. 

Next, we intend to obtain the error introduced by this formulation. We start by changing the 
variable and function by centering F around x0. We set 

= y d- 2o, 

V(~) = F(~o + ~) - F(~o), 

b = F(~o). 

(3) 

Equation (2) yields 
dy 
d--t -- G(~) d- b, 

~(0) = 0. 

Note that  the solution of system (4) verifies the relation 

(4) 

3(t)  = y(t)  + 30, (5) 

where Z(t) represents the solution of problem (2) and ~(t) the solution of system (4). Applying 
the optimal derivative to system (4), G is replaced by a linear map .4. We obtain the equation 
which defines the optimal problem 

du = .4u + b, 
dt (6) 

u(0) = 0, 

and u(t) is its solution. 

3. O P T I M A L  D E R I V A T I V E  P R O C E D U R E  
IN A N  I N T E R V A L  [a, ~] 

Let [c~, ~] be any interval of the real time, x E R n, the function G(~) is written as 

G(~) = F(~ + x) - F(x).  (7) 

We will now briefly recall the procedure followed in the optimal derivative of G. We refer to [1,2] 
for more details. 

One minimizes the functional 

jfa 
~ 

J(A)  = ItG(~) - A~(t)H 2 dt (s)  
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along a given solution. This gives 

This computation is then used iteratively on the interval [~, ~] as follows. 

FIRST STEP. C o m p u t e  t he  initial ma t r ix  A °. A ° is the initial matrix: generally, one chooses 
for A ° the Jacobian matrix of G at a point. 

SECOND STEP. C o m p u t e  A 1 from the solution of the equation 

a~ = (A0) ~ + b, 
dt (10) 

~(0)  = 0, 

by minimizing the functional 

L 
~ 

J ( A )  = Ila0j(t)) - A~(t)ll 2 dr, 

~(t) being the solution of equation (10). A 1 is uniquely determined by formula (9). 

THIRD STEP. 
we first solve 

(II) 

Assuming that A1,... ,A 0-1) have been computed, to compute A0) from A 0-1), 

d~ (AO_: ) )  ~ + b ' 
dt 

~(o)  = o. 

Let ~j(t) be the solution of equation (12). The minimization of the functional 

L Jy(A) = IlG(flj(t)) - Aflj(t)ll 2 dt 

yields A j. 
In fact, we have the following relationships between A j -1  and AJ: 

where 
G(~j) = F(~j  + x) - F(x ) ,  

and 

(12) 

(13) 

(14) 

(15) 

L~ u(~) = exp [ ( ~ -  s)A(x,O)] (b)ds, 

b = F(x) .  

In this way, an approximation u(~) of ~(t) at point ~ is calculated, and 

~ = u ( ~ ) .  

with respect to u, gives 

(18) 

f ~  exp - (16) 

b = F ( x ) .  

The limit of this sequence represents the optimal matrix A(x, 0), relative to the problem starting 
at x0 and integrated on the interval [a, ~] of length 0. 

Solving the obtained linear system 

/) d---~ = x,O u + b, (17) 

u(O) = o, 
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4.  O P T I M A L  A P P R O X I M A T I O N  P R O C E D U R E  
I N  T H E  I N T E R V A L  [0, T] 

We will now construct an optimal approximation on a whole interval [0, T l, using the optimal 
derivative presented above in each subinterval [a,/~] of a suitable subdivision of [0, T]. For the 
time being, we consider an arbitrary subdivision Its, t~+l], i = 0 , . . . ,  n, to = 0, tn = T. We denote 

Ti+ 1 -~- t i+  1 -- t i. 
In this subdivision, the nonlinear function G can be written 

G(#) = F ( #  + ~(ti))  - F(Z( t i ) ) .  (19) 

Note that  there does not exist a unique function G, but the functions obtained by centering F 
around the points ~(ti) on each of the subdivision [ti,t~+l] of the interval [0,T]. We start with 

the initial value ~(t0) = x0 = ~0. 

Algorithm 

FIRST STEP. 
departing from Ao = D F ( x o ) ,  allows us to compute/i l(X0, rl).  

The solution of the corresponding linear system on the interval [to, tl] 

The solution of the optimal derivative problem on the interval [to, tl] from x0 = x0, 

du (.41(~0, n ) )  u + bo, 

u(0) = 0, 

b0 = F(~0), 

(20) 

gives an approximation Yl = u(tl)  of y l ( t l )  and 

1~1 - - y l + x 0 .  (21) 

SECOND STEP. The solution of the optimal derivative problem on the interval [tl,t2] from 
~(tl) = Xl, departing from Al(X0, rl) ,  allows us to compute A2(xi, T2). 

The corresponding linear system can be written 

du 
d--t = A 2 ( X l '  r2)u  "~ bl,  

u(0) = 0, (22) 

bl = F(~I) .  

The solution of this system gives the value of the approximation/)2 = u(t2), of ~(t2) and conse- 

quently 
X2 = Y2 -~ Xl" (23) 

THIRD STEP. Assuming that Xl,--., Xi have been computed, to compute ~i+l from ~i, we first 
solve the optimal derivative problem in the interval [ti, ti+l]. 

We obtain the corresponding optimal matrix -4i+1(xi, Ti+l) which defines a linear equation of 

the form du =/ i i+y(~i ,  ri+l)U + bi, 
dt 

= 0, 

b~ = F(~i),  

whose solution on the considered interval is 

~-- /~i+l 

(24) 

(25) 
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In this way, an approximate value ~)i+1 = u(ti+i), of ~(ti+l) is calculated and consequently, the 
general scheme of the optimal approximation solution of system (2) can be written 

~i+l = Z)i+l + ~i, 
0 < i < n. (26) 

:~0 ---- : r0 ,  

Finally, the optimal approximation procedure permits us to construct a function ~(t) by recursive 
application of approximations found on each of the intervals [ti, ti+l]. :~(t) is defined by 

.2( t )=ui+l( t )+xi ,  f o r t i _ < t < t i + l ,  0 < i < n ,  (27) 

where u is the solution of equation (24), and ~ is the optimal approximation of the solution x 

on [0, T]. 

REMARK 1. Note that  ~ and ~ are in fact functions of the subdivision r = (ri+l). This depen- 
dence may be emphasized by the notation ~(~), &(r), it[ = supi Ti+l. 

5. E R R O R  E S T I M A T E  

In this section, we are going to estimate the error introduced by the transformation of prob- 
lem (1) into problem (2) and the error between the solution of problem (2) and the optimal 
approximation. We compute this error on the interval [ti,ti+l], where A~+l(ki,ri+l) = Ai+l 
represents the optimal matrix calculated in Section 4. We will prove that  under some conditions, 
the solution given by the optimal approximation converges to the solution of the nonlinear system 

in Lt(0 ,T) .  
First, we consider the case when the function is dissipative on the open set containing the 

trajectory of the desired solution. That  is to say, we assume that  by selecting the canonical 
Euclidean norm in R n and by denoting (.,.), the corresponding scalar product, there exists 

R > 0, R > llxoll + MT, c~ > 0, such that  

< f ( x )  - f ( y ) ,  x - y)  <_ -o41z - yll 2, (28)  

for all x, y e Bn = B(o, R). 
The basic assumptions on F allow us to confirm that  the desired solution remains inside a 

sphere with center o, and radius IIx011 + MT, such that  t _< T. 

LEMMA 2. The matrix given by the relation (9) is bounded in the interva/[ti, ti+l]. 

PROOF. In fact, 

IIAII  [G(~(t))][~(0] T dt [~(t)][~(t)] T dt 
\ J r ,  \ J r ,  (29) I )_1 _f',+, (f"+' < [G(,~(t))] [~(t)] T [y(t) ]  [y(t) ]  T dt  
j f, i \ J t ,  

in view of (H1) and (H2) in Section 2, and we have 

;,+, or,,+, )-, IIC(, (t))ll II[ (t)lmll dt 11 7(t)ll II[ (t)lmll dt 
J ti \ J  tl (30) 

_ C , t ;  '+1 dt) (~t['+' ll~(t)ll2 dt) -1 < Mll,j(t)ll 2 

Finally 
fti+l ll~(t) ll 2 dt 

IIAII < M ~  < M. 
- ,-.T.jt, ll~(t)ll ~d t -  

(31) ! 



26 T. BENOUAZ AND O. ARINO 

PROPOSITION 3. With Lemma 2, under the assumptions (H1), (H2), and (H3) on F,  and if  F 
is a-dissipative for some c~ > 0, then ~2 (r) converges to ~(~) in LI(0 ,T) ,  as the step size of the 
subdivision goes to zero. 

PROOF. We will first evaluate the error introduced by the optimal approximation on the interval 
[ti , ti+l].  We have 

~(~)(t~+l)-~(~)(t~+~) 2 ft,+, = Jr, ~ss \ / ~ ( ' ) ( t ) -  ~( ' )( t)  2) ds 
d f 

(32) /"+' (~-(")(s)- ~(')(s), ~-(s)- ~(s)} ,~s 
= 2 j r  i 

by denoting between ti _< s _< ti+l 

and 

e(~)'s't) = vi+a(s) +- zi  -( ')  
_-b) 

~(~)(s) = u~+l (s) + ~i , 

Oi+l(S) = G(Vi+l) + bi, 

~,+l(s) = F (v,+l + ~ ' ) )  , 

= +,,,. 

We obtain 

.e(~')(t~+1) - ~(~)(t~+1) 

Now 

f 
ti+l 

= 2 , t ,  (Vi+l(S) -- U i + l ( 8 ) , i ) i + l ( 8  ) -- Ui-I-I(S)) as. 

( 3 3 )  

( 3 4 )  

(35) 

and 

1/2 
sup IIv,+l-U,+l'l <_ 2(v.J'e'['~) ( f t ' + '  G(u,+I(s))-(Ai+1)Ui+l(8)2ds) , (39) 

ti_<s_</i+l k J  tl 

fti+, (Vi+ 1 -Ui+l,e(Vi+l(8)) (.~i..1_1).Ui+l(S) ) d8 ~(~)(t~+l) - ~(~)(t~+l) = 2 Jr, 

f 
't.i+ z 

---- 2 J t i  (Vi+l -- Ui+I,  a ( V i + l  ( s ) )  - a ( U i + l ( 8 ) ) )  ds (36) 

/? 
The first integral is < 0, since G is dissipative, so one can discard it: 

-- _ fjtf ~+1 - _ • ( , ,+,  

Using the Cauchy-Schwartz inequality for the right-hand side, 

~(') (t~+1) - ~(T) (t~+1) 

(fti+z G ( U i + I ( 8 ) )  ( ) 'U'i+l(S) 2 )1'2 (38) 
< 2 sup IIv~+l - u,+xll ( ~ v ~ 7 )  - - 4 i + z  d s  , 

t i<s<ti+z k d t l  
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we obtain 

-- _ (ftli+l G(Ui+l (Ai+l) Ui+l(8)[ ds) 1/2 I :~(r)(t,+l) X(r)(ti+l)[ < 2TV/ri~+l (S))- 2 . (40) 

In the interval [ti, ti+l], due to the minimizing property/~i+1 with respect to G, we have [2], 

fj~:i iq-1 IC(Ui+l(S) ) -  (Ai+l)Ui+l(S)  [ 2 ds 

f 
ti+l 

= inf IIC(~+1 (s)) - Aui+l(S)II 2 ds. 
V AE Mn ( R),Fte( a )C ]--oo,0[ J t l  

(41) 

In particular, using A = DG(O), we have 

_ 2 _ / t i + l  _ 
fti+, ~(Ui+l(S)) (,~iq-1) Z$i+1(8) Us < IlG(ui+l(s)) DG(O)?~i+I(8)II 2 Us, 
dtl Jtl 

(42) 

which yields 

,~ 1/2 
x ( r ) ( t , + l ) -  x(~')(t ,+l)<_ 2 rV/~T~ ( / i  '+* ,[G(Ui+l(S))- DG(O)Ui+l(S)[[ 2 ds) 

< 2 vV~-~ rv/~-~-T sup IIG(u~+l(S))- OG(O)u~+a(s)ll. 
t~<s<ti+l 

(43) 

In view of (H3), we have 

IIG(u~+l(S)) - DG(O)u~+ds)ll <~ M211u~+x(s)ll 2, (44) 

and 
;Z(r)(ti+l) -- :~(~')(ti+l) <_ 2M2(Ti+I) sup [llu~+l(s)ll2]. (45) 

ti<_s<~ti+l 

Application of Gronwall's Lemma to the linear equation defining the optimal approximation in 
the interval [ti, ti+l] yields 

~tllu~+x(s)ll <_ I Ai+, Ilu~+l(s)ll ÷ Ilbill, 
Ilu~+x(0)ll = 0, 

b, = F ( ~ I ' ) )  , 

(46) 

and 
~ e IIA'+all(ti+l-t') - 1) 

sup Ilu,+x(s)ll <IIb ,  II 

In view of Lemma 2, and with ri+l sufficiently small, we obtain 

(47) 

sup Ilu~÷l(s)ll ~2(llb~li)T~÷l. 
t, <a<_t~+ l 

(48) 

This gives that  

Finally, denoting 

sup Ilui+l(s)ll 2 < 4(llbi]l) 2 (V~+l) 2. 
t~_<s<t~+l 

= 8 s u p  , , .  ,, i . iiodlu~q2 = 8 sup "'~" "" "'ll~,x)llaJv12, k 
O<_i<n [IxU <-IlxolI+MT 

(49) 

(50) 
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we have 

II 
C)(ti+i) - zi;‘, 11 5 k(ri+i)a. 

Multiplying by ~i+l, we obtain 

(51) 

(52) 

In the interval [0, T], the error can be written as 

(Ti+d4. (53) 
i=o i=o 

With Czo(ri+i)4 I T(supi ri+~)~ = T]T]~, it holds 

Passing to the limit, we obtain 

lim 1’ IIf - @)(s)/ ds = 0. 
Irl--rO 0 

(55) I 

We conclude that the solution Z computed from the optimal approximation converges to the 

solution of problem (2) in L1(O, T), as T - 0. 

Now, we will evaluate the error between the problems (1) and (2). 

LEMMA 4. Under the assumptions (HI) and (H2) on the function F, and if F is o-dissipative 

for some a > 0, then, 

II zi+l - dr)(ti+l)ll 5 esa7’+’ llzi - ci$“ll. (56) 

PROOF. We have 

2 (z - f, Ciz - 2) = 2 (z(t) - z(t), 5(t) - k(t)) 

= 2 (s(t) - z(t), F(s(t)) - F(Z(t))) . 
(57) 

The dissipative character of F allows us to write 

2 (CC - i, j - $ 5 -c+(t) - 3(t)l12, (53) 

and 

~IIW - WI 5 -4144 - WII. 

By integrating between ti and t, for ti < t I ti+l, 

IIs - Z(t)I) < e-“(t-t’)llz(ti) - ZcT)(ti)l( 

(59) 

(60) 

and setting z(ti) = zi and ZcT)(ti) = Zi’), we obtain 

Ilz(t) - Z(t)II 5 e-a(t-t*) IJZi -if~r)ll * (61) 

The relation (54) can be written as 

IlZ(ti+l) - Z(T)(ti+l)ll 5 f?-a(t’+‘-t’) IlZi - Zr)II (62) 



Optimal Approximation 29 

and 
Xi-I-1 -- X(~')( t i+l)  ~ e - a t ' + '  x i  _ Xi=(T) . (63) | 

PROPOSITION 5. Under the same a s s u m p t i o n s  on the f unc t i on  F a n d  under the a s s u m p t i o n s  
of Lemma 4 a n d  P r o p o s i t i o n  3, then x converges to ~(r) in LI(0,T),  as the s t e p  s i ze  o f  the 
s u b d i v i s i o n  goes  to  zero. 

PROOF. The global error estimate can be written 

x ( t i + l )  - :~(r)(ti+l) _< X(t~+l) -- 2(r)(ti+l) + ~(r)(ti+l) - ~(r)(ti+l) (64) 

and 
~(~) II (65) Xi-{-1 -- ~(~') < Xi+l  -- :~ ( r ) ( t i+ l )  -~- ;T(r)(ti-F1) -- ~i.[-ll j ~ i + 1  - -  

in view of the relations (51) and (63), 

X i + l  -- "%+l'~(r) __< e -a'ri+l x i  -- :~I r) -~ k ( T i + l )  3 

---~ e - " ~ i + l  ( e - (~ ' i  x~ - I  -- x~:)l + k(Ti)  3)  + k ( T i + l )  3 
(66) 

e-a(~-~+l+~-~) 
/ - . 1  

-< ~,-~ - ~'-'1 + ke -aT~+l (T i )  3 + k (T i + l )  3 

e--(~,+1+~,+~,-1) ~ ,_ :  - ~:)~ + ke-"(*'+'+~')(~,_l)a + k(~+~)  ~ < 

Finally, for all steps we obtain 

Xi't'l -~i÷1[[-'(~')II < e-~O-,+l÷~-,÷~-,_l+...÷r~)llxo - ~oll 
i 

~--~-a(ri+l+ri+...+ri-~)/~-. . A3 -}- k A . ~ "  ~ " - ' - 3 J  ~- k ( r i + l )  3" 
j = l  

With (7"/+1) 3 __~ ITI2Ti+I and 

i i i 

j = l  j = l  j = l  

it holds 

(67) 

(68) 

Xi+l - 5J~+)1 < e-a(r*+l+r'+r'- '+"'+rl)llx 0 - Xoll + klrl 2 ri+l + Z T~-I-j (69) 
j = l  

e -a(n+'+r '+r ' - '+ ' ' '+~l)  Ilzo - Xoll + k M  2T. 

Multiplying by ~'i and in the interval [0,T], the error can be written 
n n n 

~-~n+l x,+l -.~,+1~'(~) _< ~-~(',+l)e-"(~'+l+"+"-l+'"+'l)llxo -~oll + k Z ( r ~ + l ) l r l  2T (70) 
i=O i----0 i=O 

<-- T e - a T I I x o  -- ~'011 + k H  sT" 

Passing to the limit, we obtain 

lim f T  X(S) -- ~(~)(S) ds  <_ T e - a T I I x o  -- 5Co11. (71) 
Irl--'0 J0 

The global error is overestimated by the starting error on the initial conditions when we consider 
that  ~0 is an approximation of x(0) = x0. Then, if we suppose this error is negligible, which is 
the case in general, we have 

l im f T  X(S) -- X(~')(S) ds = O. (72) I 
I~'1---'o do 

In this case, the solution ~(r) of the optimal approximation converges to the solution x of the 
theoretical problem in L I ( O , T ) ,  as T ~ O. 
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Case W h e n  F is Not  Dissipative 

The above calculation is made under the assumption that  the function F is dissipative. In the 
Lipschitz continuous case, one can always reduce to the dissipative case by the following change 
of variables: 

x(t) = eXtz(t). (73) 

The initial equation can be written 

d_~x 
= + ) = F (74) 

dt 

and 
dz  = e_~t F (e~tz( t ) )  _ Az( t )  
dt (75) 

= H(t, z(t)). 

We obtain a new function Hit  , z) depending on time. For A sufficiently large, H(t ,  z) is dissipative 
on y uniformly with respect to time. 

In the context in which we work, we subdivide the interval [0, T] into a union of intervals 
[ti, t~+l] in which we approximate H by a function independent of t. In what follows, we will 
evaluate the error of this approximation. It holds that  

I IH( t ' z ) -H( t i ' z ) l l  < l e -~ t - e -X t ' ] l lF (e~ t z ) l l+e - :~ t l lF (e~ t z ) -F(eX t ' z ) l l  (76) 

_< AIt - tilMo + M1AIt - tdllzll 

with A > M1. By denoting 6 = It - t~l, we obtain 

IIH(t, z) - H(t~,z)}l _< AS(M0 + Mzllzll). (77) 

H(ti ,  z) will be used as an approximation of H(t, z) for t • [ti, t,+z]. 
This means that  when we consider the function H not depending on the time in the interva/ 

[t~, ti+l], we make an error characterized by the relation (77). 

6. A P P L I C A T I O N  

In this section, we present numerical computations undertaken on an example, for comparison 
purposes. We consider the example introduced in [2, Example 11] as an illustration of the global 
least square approximation. We add two computations: first, a standard RK4 procedure, then the 
optimal approximation procedure presented in Section 4 are applied to the example. Comparisons 
of the two methods, on the one hand, and of the global and the local optimal methods, on the 
other hand, have been formulated in terms of the relative errors (Table 3). 

EXAMPLE 6. Consider the following system: 

dx 2y 
dt ln(x2+y2)  ' 
dy 2x 
d--~ = - Y + l n ( x 2 + y 2 ) ,  

(=0,y0)=(0, .5),  (78) 

in the open unit disk {(x,y) E R2; x 2 + y2 < 1}. 
The linearization of F at (x0, Y0) = (0, .5) gives 

[ 1 
D F ( x o ,  Yo) = - 1 . 4 4 2 6  - ' (=o,yo)=(o,.5). (79) 
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Af te r  ten  i terat ions,  the  least square approximat ion  gives, at  the level e = 10 -6 ,  

a = [-1.4934 1.2489 ] (xo,Yo) = (0,.5). (80) 
-0 .5213  - 1 . 1 2 5 4 j  ' / 

Results in Tables 1 and 2 represent the components of the solution of the nonlinear system (78) 
(Xnl(t), Ynl(t)), the components of the solution obtained by least square approximation (80) 
(Xlinl(t),Ylinl(t)), and the components of the solution obtained by optimal approximation 
procedure (Xlin2(t), Ylin2(t) ). 

The numerical data  have been set at the following values: to = 0, T = 10, step = 0.1, e = 10 -4. 
We obtain the results shown in Tables 1 and 2. 

t 

0 0.0000000 

1 0.1432933E+ 

2 0.6613008E- 

3 0.2476355E- 

4 0.8627967E- 

5 0.2898245E- 

6 0.9504736E- 

7 0.3056629E- 

8 0.9643728E- 

9 0.2978096E- 

10 0.8954184E- 

Table 1. 

Xnl(t) Xlin2(t) Xtinl(t) 

O.O000000E+ O0 

00 0.1517739E+ O0 

01 0.5793614E- 01 

01 0.1105308E- 01 

02 -0.3666260E- 05 

02 -0.8070500E- 03 

03 -0.3078052E- 03 

03 -0.5867217E- 04 

04 0.3895649E- 07 

04 0.4291440E- 05 

05 0.1635317E- 05 

0.0000000E+ 00 

0.1432945E+ 00 

0.6613086E- 01 

0.2476381E- 01 

0.8628033E-02 

0.2898258E- 02 

0.9504751E- 02 

0.3056622E- 03 

0.9643653E- 04 

0.2978051E- 04 

0.8953958E- 05 

t 

0 .5000000E+ 

1 0.1153286E+ 

2 0.1434192E - 

3 -0.2539680E- 

4 -0.3069739E- 

5 -0.1717583E- 

6 -0.7953907E- 

7 -0.3383072E- 

8 -0.1372356E- 

9 -0.5404247E- 

10 -0.2085933E- 

Table 2. 

Ynl(t) Ylinl(t) 

00 .5000000E+ 

00 0.1177924E+ 

01 0.8519892E- 

02 -0.5333531E- 

02 -0.2656959E- 

02 -0.6254748E- 

03 -0.4509668E- 

03 0.2837578E- 

03 0.1411885E - 

04 0.3321252E - 

04 0.2386980E - 

Ylin2(t) 

00 .5000000E+ 00 

00 0.1153296E+ 00 

02 0.1434179E- 01 

02 -0.2539879E- 02 

02 -0.3069846E- 02 

03 -0.1717630E- 02 

04 -0.7954108E- 03 

04 -0.3383153E- 03 

04 -0.1372386E- 03 

05 -0.5404361E - 04 

06 -0.2085973E- 04 

In Table  3, we first give the  relat ive error  E r l  between the solut ion obta ined  by solving the  

nonl inear  sys tem (78), using RK4 procedure,  and the  solut ion calculated by the  least  square  

approx imat ion .  T h e  co lumn marked as Er2 gives the  difference between the  same R K 4  solution,  

and the  solut ion calcula ted using the  procedure  presented in Section 4. 

7. C O M M E N T S  

As a con t inua t ion  of earlier work [1,2], we have presented here deve lopments  regard ing  the  

op t ima l  der ivat ive  procedure.  T h e  emphasis  is on the  use of the  op t imal  der ivat ive  as an op t ima l  

app rox ima t ion  method .  This  m e t h o d  allows us to  solve numerical ly  the init ial  value p rob lem (1). 

E x a m p l e  6 shows sa t is factory  adequacy  of approx imate  results  wi th  respect ,  first, to  the  solut ion 
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Table 3. 

t Erl Er2 

0 0. 0. 
1 0 . 0 4 8  0.8E - 05 

2 0.148 1.1E - 05 
3 0.562 1.3E - 05 
4 0.946 1.3E - 05 
5 1.14 1.4E - 05 
6 1.18 1.6E - 05 

7 1.06 1.7E - 05 

8 0.932 1.8E - 05 
9 1.01 1.9E - 05 

10 0.983 2.E - 05 

ob ta ined  by solving the  nonl inear  system (78), using the RK4 procedure, and second, wi th  respect 

to the  global op t imal  derivative presented in [2]. This  is confirmed by the compu ta t i on  of the  

relat ive error, which permits  us to  see tha t  the opt imal  approximat ion  procedure presented in 

Section 4 is be t t e r  t h a n  the  global opt imal  derivative. 

The  proposed approach is fundamenta l ly  different from the exist ing methods,  in the  sense t ha t  

we compute  an  approximat ion  of the solut ion on each length by replacing the  nonl inear  equa t ion  

wi th  the corresponding opt imal  derivative in the considered interval.  The  error in t roduced  by 

the op t imal  approx imat ion  is of order three with respect to the  discret izat ion length ~-~. 
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