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A b s t r a c t - - T h e  aim of this paper is to present an optimal approximation method for a nonlinear 
ordinary differential equation based on the minimization in the least square sense. The approximation 
is order two or higher in the vicinity of the origin. We provide a few examples. 
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1. I N T R O D U C T I O N  

Linearization methods play an important role in the analysis of ordinary differential equations. 
A classical linear approximation is obtained by the Frdchet derivative of a nonlinear equation. 

In [1], we presented a computational procedure which yields a linear map defined as the optimal 

linearization to a nonlinear ordinary differential equation. 

The procedure is based on the minimization of a certain functional with respect to a curve 

starting from an initial value x0 and going to 0 as t goes to infinity. At each step, it gives a 

linear map, starting from the Jacobian matrix DF(x)  estimated at the initial value x0. The 
optimal approximation of the nonlinear equation is obtained as a limit of the sequence of linear 

maps determined by the procedure. Our results are in the line of previous work by Vujanovic in 

1973 [2], and Jordan et al. [3,4]. 

To the best of our knowledge, however, no theoretical evidence of the validity of the method 

introduced by Vujanovic [2] has been given up to now. It is our intention to make some progress 
in that  direction, in order to later on apply the procedure to some problems. In [5], we have 

applied this procedure to a specific nonlinear ordinary differential equation for which we proved 

existence, uniqueness and convergence of the optimal approximation associate for this. The work 
presented in [1,6] is based on the applicability of the proposed method to the study of stability. 

In this paper, we present results concerning the proposed approximation. We give a necessary 
and sufficient condition for uniqueness of the elements of the sequence determined in the course 

of the optimal approximation and prove that  the order of the approximation is two, or higher. In 
the scalar case, we give the analytic expression of the optimal approximation and prove that  the 

limit as x0 ÷ 0 is the derivative of f at 0. We give an example where the limit exists even if the 
derivative of f does not exist. We have applied the procedure to some examples and computed 

the relative error for comparison. 
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2. T H E O R E T I C A L  F R A M E W O R K  

2.1.  F o r m u l a t i o n  o f  P r o b l e m  

Consider the following system of nonlinear ordinary differential equations: 

dx 
dt F (x ( t)) ,  x (0) Xo, (1) 

where 

X = ( X l , . . .  , Xn) is the unknown function, 
F = ( f l , . . - ,  fn) is a given function on an open subset f~ of R n. 

Our purpose is to elaborate a method of approximation, which will associate to system (1) a 
linear system of the form 

dx 
d--[ = A*x  (t) ,  x (0) = xo, (2) 

where A* • Mn(R)  is to be determined. For this, we shall assume 

(H1) F(0)  -- 0. 
(H2) The spectrum a ( D F ( x ) )  is contained in the set {z : Rez  < 0} for every x ¢ 0, in a 

neighborhood of 0, for which D F ( x )  exists. 
(H3) F is -~-Lipschitz continuous. 

System (2), corresponding to system (1), will give an optimal approximation with respect to 
curve, starting at the initial point x0 and tending to 0 as t goes to infinity. 

2.2.  F o r m a l i s m  

Consider the functional defined by 

f0  t'°° G ( A )  = I I F ( x ( t ) ) - A x ( t ) l l  2 dr, (3) 

where 

F ( x )  is as above. 
A E A/In(R) is to be determined successively. 

For the time being, x is just any function defined on [0, +oo[, bounded, continuous and such that  
x • L I (0 ,+oc )  and F(x( . ) )  • Ll(0 ,+oo) .  

Later on, we will consider functions x(t)  that  are solutions of linear equations. The mini- 
mization of the functional G(A) with respect to A will allow us to get the optimal system (2). 
Differentiating (3) with respect to A along a function x yields 

for every matr ix c~. 
we have 

and 

~0 +°° 
D G  (A) (~ = 2 (Ax  (t) - F (x (t)) ,  a x  (t)) dr, (4) 

In particular, for matrices ~ such that  al,m = 1;~i,j -- 0, if ( i , j )  ~ ( l ,m) ,  

~o +°°(Ax (t) - F (x (t) ) , (~x (t)) dt = fo +°° lAx (t) - F (x (t))]l Xm (t) dr, (5) 

~o +°° lAx (t) - F (x (t))]l Xm (t) dr, Vl_<l,  m < n .  (6) 
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Assuming that  A minimizes (3) along a given function x, the above quantities are equal to zero, 
which leads to 

(/0 ) (/0 ) al j  x3 (t) xm (t) dt = fl (x (t)) xm (t) dt , (7) 
j = l  l <_j,m<_n l <_l,m<_n 

with obvious notations for the elements of matrix A. 

Introducing valued function F(x) defined by 

/o (/0 ) F (x) = [x (t)] [x (t)] T d t =  xj (t) zm (t) dt , (8) 
l<j,rn<_n 

and assuming F(x) is nonsingular, we obtain 

[/0 ] A -- IF (x (t))] [z (t)] T dt [r  (x)] -1 . (9) 

A necessary and sufficient condition for F(x) to be invertible is given in the next lemma. 

LEMMA 1. The matr/x F(x) is invertible i f  only and f f t h e  set x(ll~ +) is dense in R n. 

PROOF. F(x) being a nonnegative symmetric matrix, a necessary and sufficient condition for 
F(x) to be invertible is that  

v T r  (x) v > 0, 

that  is 

for each v E ll~ n, v ¢ 0; (10) 

,•00 
+ ° °  

v T F ( x ) v  = ((x( t ) ,v))  2 d t >  O. (11) 

II 

PROOF. This result is an immediate consequence of the Cayley-Hamilton theorem [7]. | 

REMARK 3. The condition precludes notably the possibility for x0 to be an eigenvector of Ao, or 
to belong to an invariant subspace of dimension less than n. In the case when Ao has only simple 
eigenvalues, it holds i f  and only ff  xo has a nonzero projection on each of the eigenspaces. 

This happens if and only if Vv 7~ 0, (x(.), v) ~ 0; that  is, x(R +) is dense in R n. 

Suppose now that  x is the solution of a linear equation 

dz 
d--~ = Aoz  (t) ,  x (0) = zo, (12) 

in which Ao = DF(xo) .  

From Assumption H2 in Section 2.1, we know that  x(t) goes to zero exponentially, as t goes 
to +co. In this case, Lemma 1 leads to the following condition for F(x) to be invertible. 

LEMMA 2. Suppose x(t) = exp(tAo)xo, where Ao satisfies H2 in Section 2.1. Then, a neces- 
sary and sufficient condition for the matr/x F(x) to be invertible is that the rank of  the family 
Xo, Aox0,. • . ,  A~-  t xo be equal to n, 

Rank [x0, A o x o , . . . ,  A~-lXo] = n. (13) 
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2.3. Algorithm 

The computation presented in Section 2.2 will be used iteratively. We shah assume that the 

successive matrices are stable; that is, their spectrum lies in {z : Re z < 0}. 

The initial matrix is the Jacobian matrix of F at x0, where x0 is an arbitrary point in a 

neighborhood of 0, such that DF(xo) exists. 
Consider system (I) 

dx 
d--t = F (x (t)), x (0) = Xo. 

FIRST STEP. Compute A0 = DF(xo).  

SECOND STEP. Compute A1 from the solution of the equation 

dy = Aoy (t) y (0) = Xo (14) 
dt 

by minimizing the functional 

fo G(A)  = IIF(y(t))  - A y ( t ) l l  2 dt, (15) 

y being the solution of equation (14). 

A1 is uniquely determined by formula (9), where we let x be the solution of equation (14). 
From this point on, the matrices determined by the procedure are no longer Jacobian matrices 
for F at a given point. They are obtained as a sort of mean value of the derivatives of F along 
trajectories linking x0 to the origin. In order to continue, it is necessary that the above conditions 
be satisfied at each step. 

Let us first assume that this holds. Then the procedure works as follows. 

THIRD STEP. Assuming that A1, . . . ,  Aj-1 have been computed, to compute Aj from Aj-1, we 
first solve 

dy 
d-t = [Aj-x] y (t), y (0) = x0. (16) 

Let yj be the solution of equation (16). The minimization of the functional 

fo Gj (A) = IIF (yj (t)) - Ayj (t)ll 2 dt (17) 

yields Aj. 
In fact, we have the following relationship between Aj-1 and Aj: 

fo & r  (yj) = [F (yj (t))l [y~ (t)l -r dt; (18) 

that is, assuming that r (yj)  is invertible, Aj can be written as 

A j =  [ [+oo  [F (yj (t))] [yj (t)] T dt] [F (v j)] -1 
L J O  .I (19) 

If the sequence Aj converges, then the limit A* is by definition the optimal approximation of F 
at x0. 

3. P R O P E R T I E S  O F  T H E  P R O C E D U R E  

We will now consider situations where the procedure converges. 
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3.1. C a s e  W h e n  t h e  A p p l i c a t i o n  is L inea r  

If F is linear with a(F) in the negative part of the complex plane, then the procedure gives F 
at the first iteration. Indeed, in this case, equation (7) reads 

AF (z) = F r  (z);  (20) 

it is clear that  A = F is a solution. It is unique if F(x) is invertible. This happens if and only if 
condition (10) is satisfied. 

Therefore, the optimal approximation of a linear system is the system itself. 

3.2. G e n e r a l  Case ,  W h e n  t h e  S y s t e m  is t h e  S u m  of  L inea r  a n d  N o n l i n e a r  T e r m s  

Consider the more general system of nonlinear equations with a nonlinearity of the form 

F(x) = Mx + F(x) ,  x(O) = Xo, (21) 

where M is linear. 
The computation of the matrix A1 gives 

[/Y ] A1 = [F(x(t))] [x(t)] T dt [F(x)1-1 , (22) 

which can be written as 

A I =  [ M F ( x ) +  ( f o  +c~ [_~ (x (t))] [x(t)] T dr)] [F(x)] -1 , (23) 

and finally 

Hence, A1 =: M + A1 with 

Then, for all j ,  we have 

(24) 

(25) 

31:8-F 

Aj = M + Aj, (26) 

with [/y 
If, in particular, some components of F are linear, then the corresponding components of F are 
zero, and the corresponding components of Aj are those of F.  

If fk is linear, then the k th row of matrix Aj is equal to fk. 

4 .  S C A L A R  C A S E  

4.1. E x p r e s s i o n  o f  t h e  O p t i m a l  A p p r o x i m a t i o n  

Consider the following nonlinear scalar equation: 

dx 
d-~ = f (x (t)),  x (0) = x0, (28) 

where f : R * R, and satisfies the following: 

(HI) f(O) = O. 
(H2) if(x) < 0 at every point where if(x) exists in an interval ] - a,  +a[ ,  a > 0. 
(H3) f is absolutely continuous with respect to the Lebesgue measure. 
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Choose xo E] - a,  q-a[ such that f~(xo) exists. Set a0 = ft(xo) and use the method presented in 
Section 2.3. 

We solve the linear equation 

to obtain 

dx 
d-7 = ~o~ (t) ,  x (0) = x0 (29) 

x (t) = exp (aot) xo. (30) 

Substituting f for F in expression (9), we ge t  

al : (f:°°e2aot dr) 

For xo ~ O, f(x(t)) is almost everywhere differentiable and 

1 (31) 
XO 

d f,  d-'t [f (ea°tx°)] = (ea°tx°)ea°tx°a°" (32) 

4.2. A n a l y s i s  o f  a*(xo) 

LEMMA 4. I f  the derivative of f exists at 0 and f is continuous, then limxo--,oa*(xo) = f ' (0).  

PROOF. With f (z)  = zf~(O) + ze(z), equation (36) can be written 

2 fo x° a* (Xo) = f '  (0) q- x--~o ze (z) dz. (37) 

The second term of equation (37) 

converges to 0 as xo ~ 0. Hence, limxo--.oa*(xo) = if(0). | 

(36) 
2 fxo 

a* (xo) = x2 Jo f (z) dz. 

This gives 

fo +°° 1 1 fo+°° f ( x ( t ) ) ea° td t=  --ao [f(x(t))e~°t]:°° - a-o (f '(x(t))e2a°tdt)xoao, (33) 

from which we obtain al 

( a1-~2 f ( x o )  -bao 
\ xo 

Changing the variable t to x(t) in the integral, we obtain 

2 :  x° 
31 = x ]  Jo f (z) dz. (35) 

So, al  does not depend on ao. Repeating the procedure, as indicated above will give the same 
result. In this case, the procedure leads to the optimal approximation in one step; i.e., 



Nonlinear Ordinary Differential Equation 75 

We can see that  the optimal approximation defined by equation (37) depends on the initial 
value xo and converges to if(0) as xo , 0 if if(0) exist. 

REMARK 5. It is possible to find a limit even if the derivative of f at 0 does not exist. 

EXAMPLE 6. Consider equation (36) and write f(z)  as follows: 

f ( z )  = - z g ( z ) .  (39) 

This yields 
_ 2  fxo 

a* (xo) = X2 Jo zg(z) dz. 

Let us choose g(z) = I sinlog Izll, for z ¢ 0. 

2 fo ~° a* (xo ) -  x~ zlsinloglz{{ dz. 

(40) 

(41) 

Changing z to uxo, 

a* (Xo) = - 2  ulsinlog{uxo{I du, 

and changing - log(uxo) to v, we have 

2 flo~°~ - - -  e -2v {sin (v)} dr, 
a*(x0)=  g(1/xo) 

(42) 

(43) 

and 

- - -  e -2v {sin (v){ dv a*(x0)= . 

2 e -2(v+l~) sin (v) dv 
X2 l=k 

]I" = - - - -  e -2br  e - 2 v  sin (v) dv 
X2 \ l = k  / 

2 e -2klr  ~o Ir 
- -  x 2 1 - e -2~ e -2vsin(v) dv. 

With k r  -- log(1/xo) ~ e -2k~ = x~, we have 

- 2  fo '~ a* (xo) = 1 - e -2~ e -2v sin (v) dv. 

Finally, 

2 co th( r )  a* ( X o ) = - g  

Hence, limxo--~oa* (xo) exist. 

(44) 

(45) 

(46) 

4 . 3 .  A n o t h e r  E x p r e s s i o n  o f  a*(xo) 

Assuming f is analytic 

f ( x )  = ~ f(n)(O)xn, 
n! 

we can give another expression of a*(xo) 

a* (xo)= 
E oo__ 1 (f(n) (0)in0 X~-}- 1 f:co e(n.{.1)sa 0 d8 

2 1,+oo e2aa o Xo 30 ds 

(47) 

( 4 8 )  
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and finally, 

and 
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oo f ( n ) C 0  ) n--1 
a* (x0) = 2 E ( n +  1)! x° ' 

n = l  
(49) 

5. O R D E R  O F  T H E  A P P R O X I M A T I O N  

In order to estimate the order of the approximation, we will evaluate the functional defined by 
relation (3): 

fo °° IIF (y (t)) - A y  dt, (52) (t) ll 2 

where A is any matrix. Starting from an arbitrary matrix A0, the first matrix obtained in the 
optimal procedure minimizes the functional 

fo +°° IIF (Yo (t)) - Alyo dt, (53) (t) ll 2 

where yo(t) is the solution of equation (14). We have the following relationship between Ax 
and A: 

f0 +°° f0 +°° 
IIF (yo it)) - Alyo (t)ll 2 dt <_ [IF (yo (t)) - Ayo (t)ll 2 dr, (54) 

and between Aj and A, 

HF (yj (t)) - (Aj+I) yj (t)ll 2 dt <_ IIF (yj (t)) - Ayj  (t)ll 2 dt, (55) 

where yj(t)  is the solution of equation (16). 
In the limit (j ~ +oo), we obtain 

f0 +°° f0 +°~ 
IIF (y* (t)) - A 'y*  (t)ll 2 dt < HF (y* (t)) - Ay* (t)ll 2 dr, (56) 

where y*(t) is the solution of equation 

dy = A*y (t) 
dt 

So 

y (0) = z0. (57) 

f0 °° IIF (y* (t))  - A ' y *  (t)ll 2 d t  = inf f+oo lie (y* (t))  - Ay* (t)ll 2 dr. 
VAE2~dnR J0 

Re a(A)c] -oo ,0[  

(58) 

2 
a* (x0) = f '  (0) + xo f "  (0) + . . .  + -------~.xr~ if(n) (n + - (0) + - . . .  (50) 

REMARK 7. The role of the optimal approximation in the study of stability is evidenced in 
the scalar case [1,8] by the fact that in this case, the function x , v(x)  = x2a*(x) is a 
Lyapunov function for the equation. Indeed, if x(t) is a solution of equation (28), differentiating 
[(x(t))2a*(x(t))] with respect to t, we obtain 

d [ (x( t ) )2a .  ix (t)) ] = ( f  (x( t ) ) )2 .  (51) 
dt 

Since, on the other hand, v(x)x  < 0 (in view of assumption H1 and H2 in Section 4.1), we obtain 
that  v(x(t))  , 0  as t , +co, therefore, x(t) ) 0 as t ---* +oo. 
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In particular, for A = DF(O), we have 

f0 + ~  ~0 +~  
IIF (y* ( t ) )  - A*y*(t)ll 2 dt <_ IIF (y* (t)) - DF (0) y* (t)ll 2 dt, (59) 

and 

fo÷~ lIf (y* (t)) - A'y" (t)ll 2 et <_ 0 (llx011~) 2 (60) 

We will now evaluate the difference Hx(t) -y*(t)[[ where x is a solution of equation (1) and y* is 
the solution of the optimal approximation, both having the same initial value. We have 

dx dy* 
- -  = F ( x ( t ) )  - A ' y *  ( t )  = F ( x ( t ) )  - F ( y *  ( t ) )  ÷ F ( y *  ( t ) )  - A ' y *  ( t ) .  ( 6 1 )  dt dt 

From Assumption H3 in Section 2.1, we have 

d 
d-t [Ix (t) - y* (t)l t < ~ [Ix (t) - y* (t)H -t- [IF (y* (t)) - A'y* (t)][, (62) 

and using Gronwall's lemma, we obtain 

IIx (t) - y* (t)ll < e ~t l i e  (y* (s))  - A'y* (s)ll ds  

t 1/2 t (63) 
< (fo e2"y(t-8) ds) (fo I,F(y*(s))-A*y'(s)ll2 ds) W2. 

For every T > 0, there exists M > 0 such that  

Itz (t) - y* (t)[ I < M IIx0tl 2 , for 0 < t < T. (64) 

This approximation can be extended to R + if we assume that  F is dissipative, namely, if for 
some a > 0, we have (F(x) - F(y), x - y) < -allx - yH • for every x, y. With F(0) = 0, we obtain 

t 1/2 
,,x(t)-y*(t)ll < (fo e-2~(t-8)ds ) ( ~  ,,F(y*(s))-A*y*(s)mm2 ds) 1/2 . (65) 

Finally. there exists M >_ 0 

[11 (oo) IIx (t) - y* (t)LI < 

The proposed approximation is of order two or higher. More generally, it has the same order as 
the nonlinearity. 

EXAMPLE 8. Consider the following equation: 

dx = F (x) = - x  + x ~, x (0) = x0. (67) 
dt 

In this case, 

I1~ (t) - y* ( t ) l l  = 0 ( Ixo l~ ) ,  

where y* is the solution of the equation 

dy 
d--t "= a*y (t), 

Hence, the approximation is of order three. 

(6s)  

y(0) --x0. (69) 
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6. A P P L I C A T I O N S  
Prior to the study of examples of nonlinear systems, we present the computational procedure. 

6.1. C o m p u t a t i o n a l  P r o c e d u r e  

The computational procedure is based on the algorithm presented in Section 2.3, and written 
in Fortran language. The differential equations have been solved using the fourth-order Runge- 
Kutta method [7]. 

Input x0, A0. 

LEVEL (I). Computation of A1 in terms of A0 

AI: [~o +°° [F (eA°txO) ] [eA°txO] T dt] [/+oo [ £AOtxO] [eA°txO] T dt]-I (70) 

LEVEL (II). Computation of AU) in terms of AU_I ) 

A , j , :  [fO +c° [F (eA(J-1)tXo)] [eA(J-1)tXO] -I" dr] [J00 +00 [eA(J-1}tX0] [eA('-I)tX0] T dr] -1 . (71) 

LEVEL (III). Computation of 

LEVEL (IV). If 

IN(J ) -  AU-1)II • (72) 

I IAu)- Au-,)II < (73) 

where ¢ is the desired level of approximation, then set A* = A(j). A* is the optimal approximation 
of F at x0. Else set A(j_I) -- A(j) and go to Level (II). 

6.2 .  

EXAMPLE 9. 
tiable at 0. 

C a s e  o f  a S y s t e m  which Canno t  b e  L i n e a r i z e d  a t  O U s i n g  t h e  F r ~ c h e t  D e r i v a t i v e  

Consider a system with a function of the absolute value type, that is, nondiiferen- 

(xo,Yo)=(1,0.5), I~1<1. (74) 

dx 
d'-t- - - x  + ozsin ( lY l ) ,  

du 
d-7 = - y  + ~ sin (#1), 

Then we have, for a = 0.5, 

(xo, yo)=O,o.5). (75) [0;101 
After five iterations, the computational procedure gives (e = 10 -6) 

A'= [-1.0207 0.5175] 
[. 0.3502 -0.8336 ' (xo, Yo) = (1,0.5). (76) 

Table 1 shows the values of the solutions of systems (74) and (76) and the relative error. The 
formula of relative error is given by 

Er = ]IY (t) - y* (Oil 
Ily (011 ' (77) 

where y is the solution of equation (1) and y* is the solution of equation (2). 
The curves in Figures 1 and 2 represent the graphs of the respective components (x(t), y(t)) 

of solutions of systems (74) and (76) as a function of time. 
Note that the method enables us to associate a linear system (optimal approximation) to a 

nonlinear system in the neighborhood of 0. 
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.6022978E-01  .022 

.3692688E-01  .030 

.2261112E-01  .039 

.1383805E-01  .047 

. 8467011E-02  .056 

.5180184E-02  .065 

. 3169155E-02  .074 

• 1938808E-02  .083 

. 1186105E-02  .093 

. 7256214E-03  .10 

. 4439117E-03  .11 

79 

0 . 5  - -  

0.0  

I _x(t) 

Curve 1: solution of the nonlinear system (75). 
f the optimal approximation (75). 

I I I I  I I  ........................... t 

Figure  1. Represen t s  t he  var ia t ion of the  solut ion x( t )  as a funct ion  of t ime  for t he  
init ial  condi t ions  (x(0), y(0))  = (1, 0.5)• 

Curve 1: solution of the nonlinear system (73). . 
;real opproxima[ion (75). 

......................... & 

Figure  2. Represen t s  t he  var ia t ion  of t h e  solut ion y ( t )  a s  a funct ion  of t ime  for t he  
ini t ial  condi t ions  (x(0),  y(0))  = (1, 0.5). 
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6 .3 .  E x a m p l e s  o f  a N o n l i n e a r  O r d i n a r y  Di f fe ren t ia l  E q u a t i o n  

EXAMPLE 10. Consider the following system: 

dx x 3 
dt x 2 + y2 ' 

dy y3 

dt x 2 + y 2 '  

(78) 

Here, the first and second derivatives of F, DF(O) and D2F(0) are equal to zero. In this case, 
the proposed approximation is of order three 

IIx (t) - y* (t)ll = o (11 o113). (79) 

With the Jacobian matrix DF(x) computed at (xo, Yo) 

[ -1 .12  0.64 ] 
nF(xo,Yo) = L 0.16 - 0 . 5 2 J '  (xo, yo) = (1,0.5), (80) 

and after the seven iterations, the computational procedure gives (e = 10 -6) 

A* ---- [-1.1030 0.6127 ] 
[ 0.3085 -0 .7844J '  (xo, Yo) ---- (1,0.5). (81) 

Table 2 shows the values of the solutions of systems (78) and (81) and the relative error (77). 
The curves in Figures 3 and 4 represent the graphs of the respective components (x(t), y(t)) of 
solutions of systems (78) and (81) as a function of time. 

Table 2. 

x.~(t) xn.(t) Y.~(t) ~ii.(t) 
.5000000E+00 

.3742482E÷00 

.2472790E÷00 

.1548591E+00 

.9504148E-01 

.5789638E-01 

.3517207E-01 

.2134548E-01 

.1294948E-01 

.7854884E-02 

.4764367E-02 

.2889766E-02 

.1752739E-02 

.1063091E-02 

.6447978E-03 

.3910897E-03 

E~ 

.5000000E÷00 0 

.3723457E+00 .003 

.2457177E-02 .005 

.1557334E+00 .003 

.9722868E-01 .018 

.6035041E-01 .036 

.3737442E-01 .055 

.2312476E-01 .075 

.1430294E-01 .096 

.8845290E-02 .11 

.5469839E-02 .13 

.3382419E-02 .16 

.2091590E-02 .18 

.1293374E-02 .20 

.7997808E-03 .23 

.4945586E-03 .25 

t 

0 .1000000E+01 

1 .4914913E+00 

2 .2736490E+00 

3 .1607496E+00 

4 .9635604E-01 

5 .5818971E-01 

6 .3523752E-01 

7 .2136008E-01 

8 .1295274E-01 

9 .7855611E-02 

10 .4764529E-02 

11 .2889802E-02 

12 .1752747E-02 

13 .1063093E-02 

14 .6447982E-03 

15 .3910898E-03 

• 1000000E+01 

.4909525ET00 

.2723794E+00 

• 1607859E+00 

.9755226E-01 

.5986447E-01 

.3690589E-01 

.2279388E-01 

•1408825E-01 

.8710063E-02 

.5385614E-02 

.3330189E-02 

.2059256E-02 

.1273371E-02 

•7874095E-03 

.4869080E-03 

EXAMPLE 1 i .  Consider the following system [9]: 

dx 2y 
dt In (x 2 + 
dy 21 
d--t = - y  + In (x 2 + 

in the open unit disk {(x, y) 6 R2; x 2 + y2 < 

y2), 

y 2 ) ,  

1}. 

(x0, y0) = (0, 0.5) (82) 



Nonlinear Ordinary Differential Equation 81 

1 . x ( t )  
Curve 1: solution of the nonlinear system (77), 

the optimal approximation (80), 

0 -- ili 5 

Fi ure 3. Represents the variation of the solution x(t) as a function of time for the 
mtitial conditions (x(0),y(0)) = (1, 0.5). 

y(t) 
0.5 

I ~ * ~  Curve 1: solution of the nonlinear system ( 7 7 ) .  . 
approximation (80). 

. . . . . . . . . . . . . . . . . . . . . . . .  

0.0 ............ 1~ 

Figure 4. Represents the variation of the solution y(t) as a function of time for the 
initial conditions (x(0), y(0)) = (1, 0.5). 

The  l inearization of F at (x0, Y0) = (0, 0.5) gives 

D F  (xo, Yo) = -1 .4426  - ' (x0, y0) = (0,0.5) .  (83) 

After  the  ten  iterations, the computa t iona l  procedure gives (~ = 10 -6)  

A* [ - 1 . 4 9 3 4  1.24891 
= L-0 .5213 - 1 . 1 2 5 4 j  ' (xo,yo) = (0,0.5) .  (84) 

Table  3 shows the values of  the solutions of systems (82) and (84) and the relative error  (77). 

In  bo th  Figures 5 and 6, curve 1 corresponds to  the solution of the nonlinear sys tem (82) and 

curve 2 corresponds to  the solution of the opt imal  approximat ion  (84). 

6.4. 
and t h e  O p t i m a l  A p p r o x i m a t i o n  

EXAMPLE 12. Consider  the sys tem 

dx - 7.102x - 2.103x 2 _ 2.105y, 
dt 

d__yy = 2.103x _ 2.105y ' 
dt 

The  Fr~chet derivative at  0 can be wri t ten  

-7 .102 -2 .105 ] 

2.103 -2 .105J  ' 

C o m p a r i s o n  b e t w e e n  t h e  L i n e a r i z a t i o n  b y  t h e  F r ~ c h e t  D e r i v a t i v e  

(x0,y0)=(5,0). (85) 

(x0,y0)=(5,0), (86) 
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Table 3. 

t 

0 .0000000 

1 .1432933E+00 

2 . 6613008E-01  

3 . 2476355E-01  

4 . 8627967E -02  

5 . 2898245E -02  

6 . 9504736E -03  

7 . 3056629E -03  

8 . 9643728E -04  

9 . 2978096E -04  

10 . 8954184E -05  

11 . 2595794E -05  

12 . 7123896E-06  

13 . 1780326E-06  

14 . 3 6 4 1 6 3 7 E - 0 7  

15 . 3 3 4 3 0 1 2 E - 0 8  

Xnl(t) XIin(t) Y'nl(t) ~i.( t)  
.0000000E+00 

.1517739E+00 

.5793614E-01 

•1105308E-01 

-.3666260E-05 

-.8070500E-03 

-.3078052E-03 

-.5867217E-04 

.3895649E-07 

.4291440E-05 

.1635317E-05 

.3114442E-06 

-.3104541E-09 

-.2281944E-07 

-.8688157E-08 

- .  1653209E-08 

.5000000E+00 

• 1153286E+00 

. 1434192E-01  

- . 2 5 3 9 6 8 0 E - 0 2  

- . 3 0 6 9 7 3 9 E - 0 2  

- . 1 7 1 7 5 8 3 E - 0 2  

- . 7 9 5 3 9 0 7 E - 0 3  

- . 3 3 8 3 0 7 2 E - 0 3  

- . 1 3 7 2 3 5 6 E - 0 3  

- . 5 4 0 4 2 4 7 E - 0 4  

- . 2 0 8 5 9 3 3 E - 0 4  

- . 7 9 3 7 1 7 6 E - 0 5  

- . 2 9 8 8 3 7 4 E - 0 5  

- . 1 1 1 6 0 5 8 E - 0 5  

- . 4 1 4 1 6 8 1 E - 0 6  

- . 1 5 2 9 1 5 3 E - 0 6  

.5000000E+00 

.1177924E+00 

.8519892E-02  

- . 5 3 3 3 5 3 1 E - 0 2  

- . 2 6 5 6 9 5 9 E - 0 2  

- . 6 2 5 4 7 4 8 E - 0 3  

- . 4 5 0 9 6 6 8 E - 0 4  

. 2837578E-04  

. 1411885E-04  

. 3321252E-05  

. 2386980E-06  

- . 1 5 0 9 6 6 1 E - 0 6  

- . 7 5 0 2 6 2 9 E - 0 7  

- . 1 7 6 3 5 7 2 E - 0 7  

- . 1 2 6 3 4 1 6 E - 0 8  

. 8031747E-09  

0 

0.048 

0.148 

0.562 

0.946 

1.14 

1.18 

1.06 

0.932 

1.01 

0.983 

0.971 

0.971 

0.988 

0.999 

1.00 

0.0 

° 2  ×(t) 

t"~, Curve 1: solution of the nonlinear system (81)• 
e 2; solution of the optimal approximation (83) 

I . o ~  . . . . . .  .............. ....... 

Figure  5. Represen t s  t he  var ia t ion  of the  solut ion x( t )  as a func t ion  of t ime  for t h e  
initial condi t ions  (x(0),  y(0)) = (0, 0.5). 

y(f - )  
0 . 5  m 

0.0  

Curve 1: solution of the nonlinear system (81). 
. . . .  Curve 2: solution of the optimal approximation (83). 

Figure  6. Represen t s  t he  var ia t ion of t he  solut ion y(t) as a func t ion  of t i m e  for t h e  
initial condi t ions  (x(0), y(0)) = (0, 0.5). 

t 
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and the opt imal  approximation gives 

-13.2703 
2.103 

4.31105 ] 
_2.105 ] , (x0, Y0) = (5, 0). (87) 

In Figures 7 and 8, curve 1 corresponds to the solution of nonlinear system, curve 2 the solution 
of the opt imal  approximation,  and curve 3 the solution of the Fr4chet derivative at  0. 

x(t) 
5.5- 

* * * * ~  Curve1: solution of optimal approximation (86) 
~ ,  - -  Curve2: solution of nonlinear system (84). 

• -  Curve3: solution of Frechet derivative (,65.) 
% 1 6  * ,  

* • 4 * . a ° . ° . i . ° O  ° 

°°o.obo . . . . . . . . . . . . . . . . . . . . . . . . . .  ; l o b  
Figure 7. Represents the variation of the solution x ( t )  as a function of time for the 
initial conditions (x(0), y(0)) -- (5, 0). 

r(t) 
0.05 - 

• ' ¢ '~ "~  * * * * *  Curve1: solution of optimal approximation (86) 
.~.. " ' . .  - - -  Curve2: solution of nonlinear system (64-), 
! ~ w  "* . . , . .  * Curve3: solution of Frechet derivative (85). 
• " * 4 o ° " 

i ' 

O0Oo000o I ....................... 0;2 
:Figure 8. Represents the variation of the solution y ( t )  as a function of time for the 
initial conditions (x(0), y(0)) = (5, 0). 

7. C O M M E N T S  

As a continuation of earlier work [1], we have presented in this paper  further developments 
regarding the opt imal  linearization method. The emphasis here was put on the use of the method 
as an approximation procedure. Our main results stipulate tha t  the approximation is of order 
two with respect to the initial value, and is generally of the same order as the nonlinearity. 

We included several examples showing satisfactory adequacy of approximate results compared 
to the exact ones. This is confirmed by the computat ion of the relative error which never exceeds 
120%. This could be considered a high figure, but we point out tha t  the highest rates correspond 
to port ion of the solutions very close to the origin, where in fact the best approximation is 
certainly the one provided by the s tandard linearized equation. 
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Differences between the two approximations are well reflected in Figures 7 and 8, where one 
can see that  the optimal approximation does much b~tter than the Fr~chet derivative as long as 
x(t)  stays far from zero. 
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