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Abstract 

 
In this work we use a photovoltaic generator to supply a nonlinear electronic 
circuit working under an external control. The circuit allows a transfer of the 
power delivered by a photovoltaic generator, which is a finite source of 
energy, towards a receiver which is, in our case, a direct current machine. 

The nonlinear differential system characterizing the circuit is linearized 
using the optimal derivation.  A study, of the solutions behavior and the 
external control, is presented and discussed. 
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Introduction 
Except the nuclear energies and geothermal, the sun is at the origin of the near total 
sources of energies used by humanity for its food, domestic and industrial needs: 
biomass, wind, hydraulics, fossil fuels. The sun thus provides each day to the Earth, 
by its radiation, the equivalent of several thousands of times the total power 
consumption of humanity for its activities of today. [1-4]  
The contribution of solar energy would thus be enough largely to feed terrestrial 
consumption; the only problem is to convert solar energy into a usable energy. 
The photovoltaic effect which consists in transforming directly heat into electricity 
without a mechanical engine makes is a solution to this problem [5-10]. This direct 
transformation of heat uses associated photovoltaic cells generally in parallel to 
provide the desired voltage and current. Consequently, the photovoltaic generators are 
produced by association of a large number of unit cells. 
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In this work, we use a photovoltaic generator to supply a nonlinear electronic 
circuit working under an external force. This electronic circuit allows the transfer of 
power from a photovoltaic generator, a receiver which is in our case a direct current 
(dc) machine. The nonlinear differential equation characterizing the circuit is 
described by a system of nonlinear ordinary differential equations of the form  

 

( ) ( )( )
( )⎪⎩
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=

0x0x

tu,txF
dt

dx
       (1) 

 
where 

( )n1 x,,xx L=  is the unknown function, 
( )n1 u,,uu L=  is the external excitation which can be constant (continuous) or function 

of time (periodic), 
( )n1 f,,fF L=  is a given function on an open subset Ω  of IRn, 
One applies the method of optimal derivation, introduced by Arino –Benouaz [11, 

14, 15, 17, and 19], in order to linearize this nonlinear system, and one makes a 
comparison starting from the quadratic error between the nonlinear system and the 
optimal linear obtained application [19]. 

 
Position of the Problem 
We consider the system (1) of nonlinear ordinary differential equations with the 
following assumptions: 
1) ( ) 00,0F = . 
2) F is γ  Lipchitz continuous, 
3) the spectrum ( )( )xDFσ  is contained in the set { }0 Re: <zz  for every 0≠x , in a 
neighborhood of 0, for which ( )xFD  exists. 
Our purpose can be formulated in order to find a linear ordinary differential equation 
given as: 
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Approaches the non linear equation (1) under the same initial conditions and so that 
the functional 

( ) ( ) ( )( ) ( ) ( )∫
+∞

−−=
0

2
dttuBtxAtu,txFB,AG                                    (3) 

is minimal 
 
where ( ) ( )n

n IRMB
~

,A
~ ∈  is to be determined. 

The considered problem is an optimization in the least square sense. We aim to 
replace the initial non linear equation with a linear one; i.e.: search a solution 
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approximation of the system (1) using the solution of the system (2). The 
minimization of the functional ( )B,AG , with respect to A and B, is done to the 
respect to the solutions stemmed from the initial point and lead to the regime solution 
when +∞→t . 
 
Formalism 
Differentiating ( )B,AG  with respect to A along a function x, and with respect to B 
along a function u yields 
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                                             (4) 

 
for every matrixes βα  and , in particular for the matrixes such that 
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Letting 
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After some algebraic manipulations [16, 18], we obtain 
 

( ) ( ) ( )
( ) ( ) ( )⎩
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⎧
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u,xuBx,uA
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AAA                                                (7) 

 
This will allow us to write the matrixes A and B as  
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( ) ( ) ( )[ ] ( )[ ]
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We have implicitly assumed that matrixes AΓ  and BΓ  are non singular and 

consequently A and B are uniquely defined if ( ) ( )x  and   x BA ΓΓ  can be inverted. 

 
Calculus Procedure  
The computation presented above will iteratively be used. We assume that the 
successive matrixes Aj and Bj are stable and their spectrum lies in{ }0zRe:z < . The 
initial matrixes A0 and B0 are the Jacobian matrixes of F at x0 such that DF(x) exists, 
and at u0 such that DF(u) exists; x0 and u0 are the initial values of x and u, 
respectively. 
Considering the system given by (1), the computational procedure can be summarized 
as follows: 
 
First step 
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( )
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Second step 
Computing A1 and B1 from the solution of equation 
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which is 

( ) ( ) ( )∫ −+=
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0 0
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by minimizing the functional 

( ) ( ) ( )( ) ( ) ( ) dttvBtyAtv,tyFB,AG
2

0∫
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−−=      (11) 

 
A1 and B1 are uniquely determined by the system (8), where x is replaced by y and 
v(t) is the excitation at time t. 

Apart the initial matrixes, the matrixes determined by the procedure are not 
Jacobian matrixes of F at a given point. It is necessary that the above conditions of 
this study should be satisfied at each step. Let us assume that this is true so, the 
procedure works as follows: 
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Third step 
Assuming that 1j1 A,,A −L  and 1j1 B,,B −L  have been computed, to compute Aj from 

Aj-1 and Bj from Bj-1; first we solve the following system 
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The solution yj of this equation is 
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The minimization of the functional 
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If the sequences ( )jj B,A  converge, then the limit ( )B
~

,A
~

 is, by definition, the optimal 

approximation of ( ) ( )( )tu,txF  at the point of ( )u,x 0  

 
Application 
In this section, we present an application related the procedure of the optimal 
derivative of a system governed by nonlinear ordinary differential equations with 
external excitation. This enables us to test the obtained results by quadratic error 
analysis.   

We consider the case of a nonlinear electronic circuit comprised of three state 
variables and working with an external force as shown in the following circuit. 

 

VP

IP IM

L

KxΩ (t)

C

 
Figure 1: A standard electrical non linear circuit comprised of a photovoltaic 
generator and a DC motor. 



16  T. Benouaz et. al. 
  

This electronic circuit allows the transfer of electrical power from the photovoltaic 
generator, towards a receiver which is in this case a D.C machine.  

The origin of the non linearity is provided by the characteristic function of the 
photovoltaic generator:  

 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 1

Tk

Vq
expIII P

SOP   (16) 

 
where: 
IO is the photocurrent proportional to the illumination. 
IP is the current corresponding to voltage Vp. 

IS is the saturation current  
To be more general, let 

• The generator voltage VP = x 
• The current of the DC motor IM = y 
• The rotation speed of the motor Ω = z 

The circuit parameters, used in our numerical application, are: 

H1,0L

1,0Kmkg001,0J

5,0KF10500C

r
2

x
6

=
==
=⋅= −

      (17) 

we put 
Tk

q
=γ  in the characteristic (16) of the photovoltaic generator and use the 

following numerical values of the constants : 
A1028,1I,A2I,V54,0 5

SO
1 −− ⋅===γ , 

Hence 
( )[ ]1V54,0exp1028,12I P

5
P −⋅−= −                                                      (18) 

 
The application of the Kirschoff’s laws leads to the following equations: 

C

I

C

I

td

Vd MPP −=                             

 (19)  

Ω−−=
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K
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L
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V

td

Id x
M

mPM                                                                    (20) 

 
Where Rm is the resistance of the armature of the machine, Kx is a proportionality 

factor of the electromotive force of the machine with D.C. current. 
The moment theorem enables us to write the following equation: 
 

Ω−=
Ω

J

K
I

J

K

td

d r
M

x   (21) 

where: 
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J is the moment of inertia of the machine  
Kr is the proportionality factor of the resistive couple. 
If we put ( )PP VfI =  and x, y, z in equations (19), (20) and (21), we obtain the 
following set of equations: 
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where u(t) represent the excitation : 

( ) ( )[ ] [ ] ( )[ ]tH0256,4000tH
C

II
tu SO =⎥
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⎤
⎢
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⎡ +
=                   (23) 

H(t) is the Heaviside function. 
 
Then the system (22) is written, by taking account of the values of the circuit 
components, in the form:   
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This system of nonlinear ordinary differential equations is solved referring to the 
initial conditions:   

( ) ( )0,0,1465.22z,y,x 000 =                                                        (25) 

 
Corresponding to the studied circuit  of the nonlinear  characteristic of the 

photovoltaic generator.   
By applying the procedure developed before, and after 7 iterations ( 610−=ε ), the 

optimal linear system is written as: 
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We will compare the results obtained and those given by the linearization in 

Taylor series to those of the nonlinear system. The classical linearization gives: 
 

uBxAx +=&   (27) 

with : 

u
xx 0x
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Figures (2), (3) and (4) represent respectively the solutions ( ) ( ) ( )( )tz,ty,tx  as a 
function of time for the solution of the systems (24), (26) and (27). 
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Figure 2: Variation of the solution x (t) as a function of time for the initial conditions 
(x0, y0, z0). 
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Figure 3: Variation of the solution y (t) as a function of time for the initial conditions 
(x0, y0, z0). 
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Figure 4: Variation of the solution z(t) as a function of time for the initial conditions 
(x0, y0, z0). 
 
Comparison  
In this part, we compare the results obtained by a quadratic error analysis. This 
analysis is done by using the following relationship 

( ) ( )∑
=

−=
n

1n

2
ty~txEr                                                         (28) 
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 x (t) represents the solution of the nonlinear system,  
( )ty~  represents the solution of the linear system obtained starting from the optimal 

derivative. 
 
Figure (5) represents the quadratic error as a function of time. 
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Figure 5: The quadratic error as a function of time between the nonlinear system (24) 
and the optimal linear system (26). 
 

It is noticed that the solution given by the optimal derivative is of the same order 
of magnitude as that given by the nonlinear equation. It brings the system after 
excitation, towards its point of operation. The curves given by the expansion in Taylor 
series are far from the exact solution. Hence the procedure of optimal derivation is 
better. This is demonstrated by the quadratic error which reaches its maximum at time 
t = 0,029 s; thus 23% remains small. 

This error almost vanishes l when s,t 050≥  i.e. when the solutions reach the 
operation point of the electronic circuit. At this level the solution of the nonlinear 
system is superimposed with that of the optimal linear system.  

 
Conclusion 
The behaviour of a nonlinear electronic circuit supplied with a photovoltaic generator 
is presented and discussed. Our study shows clearly that the approximation obtained 
by the optimal derivation gives satisfactory results compared to the exact results while 
respecting the dynamics of the initial problem. It is noticed, also, that the solutions 
obtained converge when +∞→t . This work developed a good demonstration of the 
photovoltaic solar energy conversion, provided an overview of photovoltaic generator 
operation and analysed the photovoltaic behaviour as a power generation technology. 
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