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Abstract

In this paper, we propose a study concerning a ratio-dependent model sug-
gested by B. D. Aggarwala which describes the evolution of AIDS in the Canadian
society in the case of extinction. On the basis of statistical data on HIV/AIDS pub-
lished by the authorities of the Canadian health department, B. D. Aggarwala could
estimate the number of people infected by this virus in Canada during four years
in advance (1996–1999). An application of the optimal derivative as introduced
by O. Arino and T. Benouaz enables us to compare the results obtained with those
found by B. D. Aggarwala.

AMS Subject Classifications:34A30, 34A34.
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1 Introduction

The main characteristics of ratio-dependent models used in population models is that
the functional responses should depend on the ratio of prey/predator. This type of re-
sponse corresponds in particular to the sharing of resources among the predators. A

Received October 5, 2010; Accepted October 14, 2010
Communicated by Dragan Djur či ć
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major problem encountered in this model is the absence of regularity in the neighbor-
hood of the origin. It is not possible to analyze this model using the classical method
of linearization. In the study of nonlinear ordinary differential equations, the lineariza-
tion method plays an important rôle. In [4–7], Arino and Benouaz have introduced an
alternative method termed as the optimal derivative method (see also [8–10]). This is an
approximation procedure based on the minimization of a certain functional with respect
to a curve starting from an initial valuex0 and going to zero ast goes to infinity.

Our intention is to apply and make some progress with this procedure in the area of
ratio-dependent predator-prey models used in the ecology of population. In the second
section, we present the model. The third section is devoted to the review of the optimal
derivative. In the last section, we apply the optimal derivative to estimate the number
of individuals in the Canadian society infected by the human deficiency virus (HIV)
that causes the acquired immune deficiency syndrome (AIDS). For comparison, we also
compute the relative errors in our model and in Aggarwala’s model (see [1–3]).

2 Presentation of the Model

The development of HIV/AIDS in a society can be modelled by a ratio-dependent
predatory–prey model. In this model, the population is divided into two classes, namely
the HIV negative individuals and the HIV positive ones. Such ratio-dependent systems
can be written in the form 

ẋ = αx(1 − x) − xy

x + y

ẏ = −ay +
kxy

x + y
,

(2.1)

wherex(t) is the number of prey (or the HIV negative individuals) at any timet, y(t)
is the number of predators (or the HIV positive individuals) at any timet, k > 0 is the
conversion factor,a > 0 is the death rate of the predator, andα > 0 is the growth factor
of the prey.

Model (2.1) is used by B. D. Aggarwala for an epidemiologic study concerning the
development of HIV/AIDS in Canada [1] (see also [2, 3]). If we simply want to study
the behavior of model (2.1) in the origin, we realize that this is not possible because
the nonlinear function representing the differential equation is not differentiable in this
point; however, in the case of HIV/AIDS, this point represents the annihilation of the
society.

On the basis of statistical data on HIV/AIDS which were published by the Canadian
health department, B. D. Aggarwala could estimate the number of people infected by
this virus in Canada during the years 1996, 1997, 1998, and 1999. A comparison with
the actual numbers including the errors made during these years is contained in Table
2.1.
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Table 2.1: Estimated and actual numbers of infected individuals during 1996–1999.

Year 1996 1997 1998 1999

Estimate 26130 28005 30278 32306

Actual 26190 28110 30181 32253

Error (%) 0.23 0.37 0.32 0.16

In this paper we linearize the model of B. D. Aggarwala by the method of the optimal
derivative and thus estimate the number of infected individuals while using the linear
model.

3 Optimal Derivative Review

Consider a nonlinear ordinary differential problem of the form (see [11–14])

ẋ = F (x), x(0) = x0,

where

• x = (x1, . . . , xn) is the unknown function,

• F = (f1, . . . , fn) is a given function on an open subsetΩ ⊂ Rn,

with the assumptions

(H1) F (0) = 0,

(H2) the spectrumσ(DF (x)) is contained in the set{z : Rez < 0} for everyx 6= 0, in
a neighborhood of0 for whichDF (x) exists,

(H3) F is γ-Lipschitz continuous.

Givenx0 ∈ Rn, we choose a first linear mapA0. For example, ifF is differentiable in
x0, then we can takeA0 = DF (x0) or the derivative value in a point in the vicinity of
x0. This is always possible ifF is locally Lipschitz. Now, lety0 be the solution of the
initial value problem

ẏ = A0y, y(0) = x0. (3.1)

Next, we minimize the functional

G(A) =

∫ ∞

0

‖F (y0(t)) − Ay0(t)‖2 dt. (3.2)
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This minimization problem is always uniquely solvable, and as the optimal linear map
minimizing (3.2) we obtain

A1 =

(∫ ∞

0

[F (y0(t))][y0(t)]
T dt

) (∫ ∞

0

[y0(t)][y0(t)]
T dt

)−1

.

Now we definey1 to be the solution of (3.1) withA0 replaced byA1 and we minimize
(3.2) withy0 replaced byy1. Then we continue in this way. The optimal derivativeÃ is
the limit of the sequence build as such (for details, see [4–10]).

4 Application

The aim of this application is to estimate the number of people infected by HIV using the
optimal derivative. In this application, we use the optimal derivative to study an example
which treats the case of extinction. Thus we will confirm the results found previously.
We make the same study but we use a model in which we linearize by the method of
the optimal derivative. For this we choose an example in the case of extinction.The
parameters are given by the model used in [1], i.e., we put the parametersα = 0.595,
a = 0.31, andk = 0.62 into the model (2.1) to obtain

ẋ = 0.595x(1 − x) − xy

x + y

ẏ = −0.31y +
0.62xy

x + y
.

(4.1)

We choose an initial condition near the origin(x0, y0) = (0.9, 0.399) and use the optimal
derivative to obtain the matrix

Ã =

[
−0.0495 0.0628
0.0061 −0.0238

]
,

which corresponds to the linear system{
ẋ = −0.0495x + 0.0628y
ẏ = 0.0061x − 0.0238y.

(4.2)

In Figures 4.1, 4.2, and 4.3 we compare the two systems (4.1) and (4.2). According
to Figures 4.1, 4.2, and 4.3, it is clear that this example treats the case of extinction
wherey(t) increases at the beginning and then starts to decrease in the course of time.
Consequently,x(t) decreases in the course of time until it is extinct. What interests us
is the evolution ofy(t) since it represents the number of infected people. In particular,
we would like to use the optimal derivative to study the variation ofy(t) in the interval
of reduction.

To use the optimal linear system in order to estimate the number of infected people in
Canada, it is initially necessary to calculate the average scale of time which corresponds
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Figure 4.1: The phase plan of (4.1) and (4.2) when(x0, y0) = (0.9, 0.399).

Figure 4.2: The variation ofx as a function of time when(x0, y0) = (0.9, 0.399).

Figure 4.3: The variation ofy as a function of time when(x0, y0) = (0.9, 0.399).
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to one year in Table 2.1. To do this, we observe that the years 1996, 1997, 1998 and
even 1999 correspond to the initial conditions of the following year. However, to carry
out this study, we consider that the change in population demographics of the Canadian
society during these years is constant. In this sense, using the Aggarwala model, we can
estimate the value oft that corresponds to the values ofx andy of the following year.
The values ofx andy are provided by the Aggarwala mathematical model. They are
those given in Table 4.1. After some calculation, we found that the average time scale
which corresponds to one year is equal to0.23.

Since1 represents the total density of the demographic population of the Canadian
society, we defineyAM andyR by

yAM =
Number of infected individuals using the Aggarwala model

30750100

and

yR =
Real (actual) number of infected individuals

30750100
.

Also,

Uninfected number = Number of total demographic population

−Infected number by the virus.

In order to assess how many people are infected with HIV, we use the optimal derivative
method. For each year we choose and compute the optimal matrixÃ and provide the
initial conditions for the following year. Hence each time we take a final time equal to
0.23. This technique gives remarkable results compared to the other technique, i.e., the
case where one considers and uses only one optimal matrix for a single initial condition
corresponding to the year 1996. In this case, we must assess the number of infected
people each year for the times0.23, 0.46, 0.69, 0.92, . . ..

Figure 4.4: Variation of the infected population during the year 1996,y = f(t).
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Figure 4.5: Variation of the infected population during the year 1997,y = f(t).

Figure 4.6: Variation of the infected population during the year 1998,y = f(t).

In order to estimate the number of infected individuals by HIV in 1997, we find the
optimal matrix as

Ã =

[
−0.534089 −0.998297

4.497484 · 10−7 0.308944

]
.

Next, for 1998, the corresponding optimal matrix is

Ã =

[
−0.534022 −0.998172

5.181080 · 10−7 0.308867

]
,

while for 1999, we find the optimal matrix as

Ã =

[
−0.533951 −0.998038

5.972634 · 10−7 0.308783

]
.

For the results of these calculations, we refer to Table 4.1. In Table 4.1, the numbers
of infected and uninfected individuals are given using various estimates. These values
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Table 4.1: The numbers of infected and uninfected individuals by various estimates.

Year 1996 1997 1998 1999

t 0 0.23 0.46 0.69

IR 26190 28110 30181 32253

UR 30723910 30721990 30719919 30717847

yR · 104 8.5170 9.1414 9.8149 10.4887

xR 0.999148 0.999086 0.999019 0.998951

IAM 26130 28005 30278 32306

UAM 30723970 30722095 30719822 30717794

yAM · 104 8.4975 9.1073 9.8465 10.5060

xAM 0.999150 0.999089 0.999015 0.998949

E onyAM 0.23 0.37 0.32 0.16

IOD 26190 28122 30183 32407

UOD 30723910 30721990 30719919 30717847

yOD · 104 8.5170 9.1453 9.8156 10.5388

xOD 0.999148 0.999085 0.999018 0.998946

E onyOD 0 0.0423 0.00685 0.479

E onxOD 0 3.9 · 10−5 7.01 · 10−6 5 · 10−4

Table 4.2: The numbers of infected and uninfected individuals by the optimal derivative.

Year 2000 2001 2002 2003 2004 2005

t 0 0.23 0.46 0.69 0.92 1.15

IOD 34631 37184 39925 42867 46026 49417

UOD 30715469 30712916 30710175 30707233 30704074 30700683

yOD · 104 11.2621 12.0924 12.9838 13.9406 14.9678 16.0704

xOD 0.998874 0.998791 0.998702 0.998606 0.998503 0.998393
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are compared with the observed values for the Canadian population. The relative errors
are calculated in order to judge the reliability and effectiveness of the optimal derivative
method. The relative error is defined by

Relative error=
|Estimated value− Real value|

Real value
.

In order to predict the numbers of infected and uninfected individuals during the years
2000–2005 using the optimal derivative, we use the same technique as described pre-
viously. The results are summarized in Table 4.2. In Tables 4.1 and 4.2 we use the
following abbreviations:I andU stand for the number of infected individuals and un-
infected individuals, respectively. We write AM for the Aggarwala model and OD for
the optimal derivative. The observed real data are denoted with R, whileE stands for
the relative error committed compared to the real data, given in percent.

5 Conclusion

Simplification is very important in modelling. The optimal derivative procedure can
be used as a powerful tool for modelling predator-prey systems numerically. In this
paper we have employed the optimal derivative technique to analyze a ratio-dependent
predator-prey model given by B. D. Aggarwala. The optimal derivative method helps to
give a quantitative and qualitative description of the behavior of the two populations. We
must use the factor time correctly in order to relate theoretical results to the biological
reality.
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