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Abstract: We apply the least square approximation to a scalar nonlinear o.d.e. This
approximation is based on the minimization of a certain functionnal with respect to a
curve starting an initial value zo and going to 0 as t goes to infinity. It’s obtained as a
limit of the sequence of a linear maps determined by the procedure. The relation
between the obtained approximation and the nonlinear o.d.e was studied. We prove
that is a Lyapunov function for the nonlinear equation.

1 INTRODUCTION. L' (0, +00) and f(z(-)) € L' (0, +00).

In (Benouaz and Arino) [1] and [2], we have presented
a general procedure of approximation of a nonlinear
ordinary differential equation. The goal of this talk
is to proved that the obtained optimal derivative in
the scalar case, is a Lyapunov function for the initial

equation [2] and [3].

2 THEORETICAL FRAMEWORK

2.1 FORMULATION OF THE PROBLEM.
Consider the following nonlinear scalar equation

‘fi_f = f(z (1)), 2(0) = o, )]

where f : IR — IR, and satisfies the following:

H1) £(0) =0, ._

H2) f'(z) < 0 at every point where f' (z) exists in an
interval |—a, +al,a > 0.

H3)f is absolutely continuous with respect to the

Lebesgue measure.
Our purpose is to apply the optimal derivative, which
will associate to system (1) a linear system of the form

de . .\
-(—l—t—:aa:(t),z(O):xo (2)

obtained by minimizing the following functional

+00
G a) = / ) —az®ld.  (3)

For the time being, z is just any function defined
on [0, +oo[, bounded, continuous and such that z €

*This work was done during the author’s visit to the
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France.

Later on, we will consider functions « (t) that are so-
lution of linear equation.
The minimization of the functional G (a) with respect
to a will allow us to get the optimal system (2). Dif-
ferentiating (3) with respect to a along a function «,
yields
+o0 400 ’
Wt [T R@ra-2 [ O O]
a 0 0

(4)
Assuming that a minimizes (3) along a given function
z, the above quantities are equal to zero, which leads
to '

+00
[ e eon
0 = ‘
/O (e (0] dt

2.2 PROCEDURE.

The formalism presented above will be used iteratively.
The initial element of the sequence is the derivative of
f at zo, where o is an arbitrary point in a neighbor-
hood of 0, such that f’(zo) exists.

Consider system (1)

(5)

a =

dz
= = f(z 1)),z (0) = zo.

First step:

Compute ag = f' (o).

Second step:

Compute a; from the solution of the equation

W = aoy (),4(0) = 70 (6)
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by minimizing the functional

+00
Gla) = Ji If W) - ay @I dt. (@)

y being the solution of eq.(6) . a; is uniquely deter-
mined by formula (5). In order to continue, it is nec-
essary that the above conditions be satisfied at each
step.

Let us first assume that this holds. Then the proce-
dure works as follows.

Third step:
Assummg that ay,...,aj—; have been computed, to
compute a; from aj_;, we first solve

dy

= [aj-1]y (), y(0) = zo. (8)

Let y; be the solution of eq.(8). The minimization of
the functional

+00
G@=[ I -aOFa  ®
yields q;.
In fact, we have the following relationship between
Gj—-1 and a;.

»

/ £y () (g (1)) dt
aj Foo :
/ (55 ()"

0

Definition 1 : If the sequence a; converges, then the
limit @ is the optimal dertvative of f at zo.

(10)

'3 ANALYSIS OF @ (z9).

3.1 EXPRESSION.
Now choose o € ]—a,+al such that f/(zo) exists.
Set ag = f’ (29) and solve the linear equation

N dx
5 = agz (1), z (0) = =0, (11)
to obtain

x (t) = exp (aot) zo. (12)
Replace z () in expression (10), we get

+00
/ [ (€%t zp) e®*dt 1

0
a) = — (13)
/+°° RITE
)

For g # 0, f { (1)) is almost everywhere differentiable
and ’

ﬂx..

‘[y(e%*xg)] F (%' 20) e***zoac. (14)

This gives
40
[ reeyesa
[y}
400
= '&];0' [f (z (t)) eﬂgt]g-oo . ‘;‘;A (fi (:L‘ (t)) e?agt{ﬁ‘) P

(15}
from which we obtain a,

(Z%’;ﬁ +ag j{"“’ (2 () eZaufdt> a8

a1:2

Changing the variable ¢ to z(¢) in the integral, we
obtain

2 [
= -—_,-/ fz)dz. ()
zy Jo .

S0, a; does not depend on ag. Repeating the procedure
as indicated above will give the same result. In this
case, the procedure leads to the optimal derivative in
one step i.e. -

~' 2 [*

= !

f(2)de. (18)

Remark 2 : Assuming [ is analytic
& (o | ,
: f(m):LL;fJxﬂ, (19)
n=1 : .

we can give another expression of G(zq)

+
Zf(ﬂ) (0) n+l { me(n+1)saod8v
JO
a(.’so) +Ooc o263
x%/ g% dg
0
Finally,
_ f(")( ) n 5
a(xo)ng-j(nﬂ) =i (21
and
_ -1
a(zo) = f (0)+3 Lo (0)+.. F T +1)' 2= ) (0)+...

(22)
One can see thal the opiimal derivative defined by
€q.(22) is a sort of mean value of the derivative of
f along trajeciories linking xo o the origin.

3.2 PROPERTY. B
Lemmae 3 : If the derivative of f exists at O and [ is
conlinuous, then hm a* (xg) = f (D).

PROCF.
be written

With f(z) = 2f {0) + 26 (2), eq.{18) can

~ 2 [ e
a(zo) = f(0) + ——ff ze(z)dz. (2%
%8 Jo
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The second term of eq.(23)

2 Zo 92 Lo |
—5/ ze(2)dz| < s(mo)—T/ zdz| = |e (z0)]
Zo Jo 5 Jo
(24)
converges to 0 as zop — 0. Hence 1im05 (zo) =
o
f(0). o

We can see that the optimal derivative defined by
€q.(23) depends on the initial value zy and converges
to f/(0) as zg — 0 if f'(0) exist.

Remark 4 : It s possible to find a limit even if the
derivative of f at 0 does not exist.

Example 5 : Consider eq.(18) and write f (z) as fol-

lows
f(z)=-z29(2). (25)
This yields
~ 2 €0
a (xg) = ——-—2/ zg(z)dz. (26)
Z5 Jo
Let us choose g(z) = [sin Log |z]|, for z # 0.
a (zg) = —-2—2 z |sin Log [2|] dz. (27)

Ty Jo

Changing z to uxy,
N 1
a(zg) = ——2/ u |sin Log |uzg|| du (28)
0

and changing —Log (uxg) to v, we have
2 [t

a(z0) = ——
xg log-z%

e~ 2¥ |sin (v)| dv (29)

= 2 /; e~ sin (v) dv. (31)

@ (zg) = —é coth () . (32)

Hence, lim a (zo) exist.

Zg-mms0

4 ROLE OF a (z) IN THE STUDY OF

THE STABILITY.
Proposition 6 Under the assumptions H1) and H2)
in section 2.1 for f, the function

z—v(z)=2"a (z) (33)

s a Lyapunov function for the nonlinear equation.
PROOF. Indeed, if z (t) is a solution of eq.(1), dif-
ferentiating

() 3 @ 1)) (34)

with respect to ¢, we obtain

ey i@m]=¢ewo?. 6

Since, on the other hand, in view of assumption H1
and H2 in section 2.1,

v(z)<0. (36)

We obtain that v (z (t)) — 0 as t — 400, therefore,
z(t) — 0ast— 4o0. O

5 (CONCLUSION.

The optimal derivative presented above, allows us to
associate a linear equation to a nonlinear o.d.e, even
if the derivative of the function f does not exists. The
procedure generate a Lyapunov function, and conse-
quently, the role of the optimal derivative in the study
of the stability is evidenced.
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