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Abstract

The aim of this paper is to present the relationship between the optimal derivative
and asymptotic stability of a nonlinear ordinary equation. We provide an example
where the study of stability of the equilibrium point is a problem; the linearization of
the differential equations at the origin has purely imaginary eigenvalues and thus the
stability type of the equilibrium point at the origin cannot be deduced from the linear
approximation.
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1 Introduction

The study of differential equations is a mathematical field that has historically been the
subject of much research, however, continues to remain relevant, by the fact that it is of
particular interest in such disciplines as engineering, physical sciences and more recently
biology and electronics, in which many models lead to equations of the same type. Most of
these equations are generally nonlinear in nature. The term “nonlinear” gathers extremely
diverse systems with little in common in their behavior. It follows that there is not, so far,
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a theory of nonlinear equations. A large class of these nonlinear problems is modelled by
nonlinear ordinary differential equations.

Routh (1884), Thomson and Tait (1879), and Joukovsky (1882) did not distinguish dif-
ferential equations from their first-order linear approximations. While acknowledging that
the process was not rigorous, and without offering any justification, stability study of the
nonlinear system was conducted on the linearized system. A major contribution of Lya-
punov and simultaneously, Poincaré, was to provide conditions for the validity of this ap-
proximation, based on the properties of the solutions of the linearized model. This method
allows us to conclude local results without having to give any quantitative information. In
fact, since the advent of the famous memoir of Lyapunov “General Problem of the Stabil-
ity of Movement” in 1892, numerous studies have been conducted by Hahn (1963), LaSalle
and Lefschetz (1961), and many others. However, the determination of a Lyapunov function
is a major challenge. Several research methods to find this function have been proposed, for
example by Schultz and Gibson (1962), Zoubov (1957), Aizerman and Gantmacher (1962),
and others.

The study of stability at the equilibrium point of a nonlinear ordinary differential equa-
tion is an almost trivial problem if the functionF which defines the nonlinear equation is
sufficiently regular in the neighborhood of this point and if its linearization at this point
is hyperbolic. In this case, one knows that the nonlinear equation is equivalent to the lin-
earized equation, in the sense that there exists a local diffeomorphism which transforms
the neighboring trajectories of the equilibrium point into neighborhoods of zero of the lin-
ear equation. On the other hand, the problem is all other when the nonlinear function is
nonregular or the equilibrium point is a center. Consider the nonregular case, in particu-
lar the case when the only equilibrium point is nonregular. In this case, one cannot derive
the nonlinear function and consequently one cannot study the linearized equation. A natu-
ral question arises then: Is it possible to associate another linear equation to the nonlinear
equation which has the same asymptotic behavior?

2 Idea of the Problem

The idea proposed by Benouaz and Arino is based on the method of approximation. In
[2–6] they introduced the optimal derivative, which is in fact a global approximation in
contrast to the nonlinear perturbation of a linear equation, having distinguished behavior
with respect to the classical linear approximation in the neighborhood of the stationary
point. The approach used is the least square approximation.

We examine, in what follows, the relationship between the concept of Lyapunov func-
tion, or more generally the stability of an equilibrium point, and the properties of the optimal
derivative at this point. To illustrate further the relationship between the optimal derivative
and the nonlinear equation, we show an example in which the Jacobian of the linearization
associated with a nonlinear equation has only eigenvalues with strictly negative real part in
the vicinity of 0 (except atx= 0), and the solution does not tend to 0. There is no theoretical
result that could in such a case determine the nature of the stability of the origin, and the
example illustrates that the behavior depends on the equation. The procedure of the optimal
derivative can detect those equations for which there is stability.
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The aim of this paper is to present some results about asymptotic stability obtained via
the optimal derivative. After a brief review of the optimal derivative procedure in Section
3, Section 4 is devoted to the study of the relationship between the optimal derivative (in
comparison with the classical linearization) and asymptotic stability. As an application,
we consider two examples in Section 5, while Section 6 presents a result about the sign
of the trace of a relevant matrix. A bifurcation analysis is offered in Section 7 and some
conclusions are given in Section 8.

3 Review of the Optimal Derivative

Consider a nonlinear ordinary differential problem of the form

ẋ = F(x), x(0) = x0,

where

• x = (x1, . . . ,xn) is the unknown function,

• F = ( f1, . . . , fn) is a given function on an open subsetΩ ⊂ Rn,

with the assumptions

(H1) F(0) = 0,

(H2) the spectrumσ(DF(x)) is contained in the set{z : Rez < 0} for everyx 6= 0, in a
neighborhood of 0 for whichDF(x) exists,

(H3) F is γ-Lipschitz continuous.

Givenx0 ∈ Rn, we choose a first linear mapA0. For example, ifF is differentiable inx0,
then we can takeA0 = DF(x0) or the derivative value in a point in the vicinity ofx0. This
is always possible ifF is locally Lipschitz. Now, lety0 be the solution of the initial value
problem

ẏ = A0y, y(0) = x0. (3.1)

Next, we minimize the functional

G(A) =
∫ ∞

0
‖F(y0(t))−Ay0(t)‖2dt. (3.2)

This minimization problem is always uniquely solvable, and as the optimal linear map
minimizing (3.2) we obtain

A1 =
(∫ ∞

0
[F(y0(t))][y0(t)]Tdt

)(∫ ∞

0
[y0(t)][y0(t)]Tdt

)−1

. (3.3)

Now we definey1 to be the solution of (3.1) withA0 replaced byA1 and we minimize (3.2)
with y0 replaced byy1. Then we continue in this way. The optimal derivativeÃ is the limit
of the sequence build as such (for details see [2–5]).
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4 Optimal Derivative and Asymptotic Stability

Although the stability criteria by linearization are clearly stated and rigorously justified,
classical linearization is sometimes inconvenient because it assumes that the Jacobian ma-
trix at the equilibrium point exists. However, this assumption is not always true. Consider
for instance a nonlinear system with a function involving an absolute value such that the
nonlinearity is not differentiable in the vicinity of the equilibrium point. The classical lin-
earization gives a necessary condition but not a sufficient one, since it does not allow to
study stability in the presence of purely imaginary eigenvalues. The search for a Lyapunov
function itself constitutes a sensitive issue because it is based in general on experience and
luck.

4.1 Scalar case

Remark4.1. We have proved in [5] that the optimal derivative

ã(x0) =
2

x2
0

∫ x0

0
f (x)dx

permits to construct a Lyapunov function of the form

v(x) = x2ã(x).

The scalar case is very interesting in the sense that we can write the optimal derivative as a
function of the classical linearization off at 0 (if f ′ exists at 0).

4.2 Vectorial case

In the vectorial case, and for better illustration of the connection between the optimal deriva-
tive and the nonlinear equation, one can consider an example characterizing a class of non-
linear, nondifferentiable functions in which the Jacobian of the associated linearization has
eigenvalues with strictly negative real part in the vicinity of 0, except at 0, and the solutions
do not tend towards 0. There is no theoretical result that allows to conclude from this as-
sumption the nature of stability of the origin. The example illustrates the fact that the result
depends on the equation. The procedure of optimal derivative makes it possible to detect
those equations for which there is stability.

Example 4.2. Consider

ẋ1 =−x1g(x1), ẋ2 =−|x1|nx2 + |x1|n−1, (4.1)

wheren ≥ 2 andg(x1) > 0. If x2 → 0, then ˙x2 > 0, and if in additionx2(0) > 0, then
x2(t) > 0. The Jacobian of the linearization associated with equation (4.1) can be written

for n = 2 andg(x1) = x2
1
2 as

DF(x1,x2) =
[
−3x2

1/2 0
a(x1,x2) −|x1|2

]
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(with appropriatea), a matrix whose determinant is positive and whose trace is negative.
Therefore the real parts of all eigenvalues of the Jacobian associated with (4.1) are strictly
negative, and thus (4.1) is asymptotically stable except at the origin. Withx0 = (1,0), the
calculation of the optimal derivative gives at the first step

A1 =
[
−0.340938 0.227282
0.909119 −0.170407·10−4

]
,

whose eigenvalues are

λ1 =−0.65595 and λ2 = 0.314995.

The optimal derivative applied to this example gives at the first step a matrix with one
positive and one negative eigenvalue. The result obtained by using the optimal derivative is
thus in conformity with the result observed.

5 Application

When the eigenvalues of the linearization at an equilibrium point are purely imaginary, the
local dynamics about the equilibrium point cannot be determined by the linear approxima-
tion. Indeed, depending on the nonlinear terms, the equilibrium can be unstable, stable, or
even asymptotically stable. Consequently, we will investigate the effects of the nonlinear
terms in equations of the form

ẋ = F(x) = Mx+G(x), x(0) = x0.

We consider the case when the nonlinear terms are given by

G(x) = aΦ(‖x‖)x, x = (x1,x2) with Φ(‖x‖) = o(‖x‖), a =±1.

Therefore the functionF defining the nonlinear differential equation can be written as

F(x) = Mx+a[o(‖x‖)]x,

and thus an example may be given as [8]

ẋ1 = x2 +ax1
(
x2

1 +x2
2

)
, ẋ2 =−x1 +ax2

(
x2

1 +x2
2

)
. (5.1)

In this case, the study of stability of the equilibrium point is difficult as the linearization
of the system at the origin has purely imaginary eigenvalues and thus the stability type
of the equilibrium point at the origin cannot be deduced from the linear approximation.
Depending on the value of the constanta, we consider the following two examples.

Example 5.1 (System(5.1)with a =−1). System (5.1) can be rewritten as

ẋ1 = x2−x1
(
x2

1 +x2
2

)
, ẋ2 =−x1−x2

(
x2

1 +x2
2

)
. (5.2)

The classical linearization ofF at the equilibrium point(0,0) gives

DF(0,0) =
[

0 1
−1 0

]
, (5.3)
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with eigenvaluesλ1,2 = ±i. The classical linearization shows that the equilibrium point
in the origin is stable but not asymptotically stable and it is a center. Thus it cannot give
information about the detailed geometry of the trajectories.

With

DF(0,0.1) =
[
−10−2 1
−1 −3·10−2

]
,

the computational procedure gives (withε = 10−6)

Ã =
[
−5.0822·10−3 1

−1 −5.0942·10−3

]
(5.4)

=
[

0 1
−1 0

]
+

[
−5.0822·10−3 0

0 −5.0942·10−3

]
,

which has eigenvalues

λ∗1 =−5.0882·10−3 + i and λ∗2 =−5.0882·10−3− i. (5.5)

The real parts of bothλ∗1 andλ∗2 are negative. Thus the optimal linearization is asymptoti-
cally stable and shows the origin as a focus. Therefore the origin is asymptotically stable.

To check the nonlinear equation, we take as a Lyapunov function the quadratic, positive
definite, function

V(x) = x2
1 +x2

2 for x = (x1,x2).

The computation of the derivative ofV along a trajectory gives

V̇(x) = 2x1ẋ1 +2x2ẋ2.

By replacing ˙x1 andẋ2 by the equations in (5.2), we get

V̇(x) =−2
(
x2

1 +x2
2

)2
< 0.

ThusV̇(x) is negative definite, and, in addition,V(x) is decreasing (more precisely,‖x‖→ 0
impliesV(x)→ 0) and unbounded in absolute value (i.e.,‖x‖→∞ impliesV(x)→∞). Thus
the equilibrium at the origin is globally asymptotically stable.

Figures 1, 2, and 3 show, respectively, the vector fields of the classical linear system
(5.3), the linear system (5.4), and the nonlinear system (5.2). Clearly, the classical lin-
earization presents a center. The vector fields of the nonlinear system and the optimal linear
system are identical and lead to the same conclusion, showing the origin as a focus, hence
being asymptotically stable.

Example 5.2 (System(5.1)with a = 1). System (5.1) can be rewritten as

ẋ1 = x2 +x1
(
x2

1 +x2
2

)
, ẋ2 =−x1 +x2

(
x2

1 +x2
2

)
. (5.6)

In this case, the integral

G(A) =
∫ ∞

0
‖F(x(t))−Ax(t)‖2dt
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Figure 1. Vector field of the classical linearization (5.3)

is not convergent. We therefore integrate from 0 to−∞, i.e.,

G(A) =
∫ −∞

0
‖F(x(t))−Ax(t)‖2dt.

The optimal derivative procedure gives (withε = 10−6)

Ã =
[

5.08221·10−3 1
−1 5.094196·10−3

]
(5.7)

=
[

0 1
−1 0

]
+

[
5.0822·10−3 0

0 5.09416·10−3

]
,

which has the eigenvalues

λ∗1 = 5.088205·10−3 + i and λ∗2 = 5.088205·10−3− i. (5.8)

The real parts of bothλ∗1 andλ∗2 are positive. Thus the optimal linearization is unstable and
shows the origin as a focus. Therefore the origin is asymptotically instable.

Figures 4 and 5 show, respectively, the vector fields of the optimal linear system (5.7)
and the nonlinear system (5.6).

Remark5.3. In the two examples that we have just seen, it should be noted that the nonlinear
system is written after application of the optimal linearization as

Ã = M + r(x0), x0 = x(0), (5.9)

whereM = DF(0) and

r(x0) =
[∫ ∞

0
G

(
etAx0

)[
etAx0

]T
dt

][∫ ∞

0

[
etAx0

][
etAx0

]T
dt

]−1

.
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Figure 2. Vector field of the optimal linear system (5.4)

The first term is the linearization. The second term, which is actually the optimal lineariza-
tion of the nonlinear functionG, turns out to be dependent on the initial valuex0. It is as if
we had perturbedDF(0), writing the optimal matrix in the form

Ã = DF(0)+o(‖x0‖) .

6 Perturbation of DF(0)

We consider
ẋ = F(x) = Mx+G(x), x(0) = x0,

where

M =
[

0 1
−1 0

]
,

x∈ R2, andG(x) = aΦ(‖x‖)x with Φ(z) > 0 wheneverz> 0 such thatΦ(‖x‖) = o(‖x‖).
Let x0 6= 0. On the set of two-by-two matrices with real entries we define the mapϕ by

ϕ(A) =
[∫ ∞

0
F

(
etAx0

)[
etAx0

]T
dt

]
[Γ(A)]−1 = M + r(A),

where

Γ(A) =
∫ ∞

0

[
etAx0

][
etAx0

]T
dt

and

r(A) =
[∫ ∞

0
G

(
etAx0

)[
etAx0

]T
dt

]
[Γ(A)]−1 .
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Figure 3. Vector field of the nonlinear system (5.2)

Now we buildÃ = ϕ(A0), i.e.,

Ã = ϕ(A0) = M + r(A0),

the initial matrixA0 beingA0 = DF(x0). It is assumed thatG was chosen such that the
spectrum ofA0 is close to the spectrum ofM. We choosex0 close to 0 so thatr(A0) is very
small in a neighborhood ofx0. SoetA0x0 tends to 0 exponentially ast → ∞, andΓ(A0) is
positive definite.

Theorem 6.1. Under the assumptions of this section, if G is as small as necessary and DG
is uniformly bounded, then

sgn
(

tr(Ã)
)

= sgn(a).

Proof. The calculation of the trace of̃A gives

tr(Ã) = tr

(
M +

[∫ ∞

0
G

(
etA0x0

)(
etA0x0

)T
dt

]
[Γ(A0)]

−1
)

= tr(M)+ tr

([∫ ∞

0
G

(
etA0x0

)(
etA0x0

)T
dt

]
[Γ(A0)]

−1
)

= tr

([∫ ∞

0
G

(
etA0x0

)(
etA0x0

)T
dt

]
[Γ(A0)]

−1
)

as tr(M) = 0. Using the property tr(AB) = tr(BA), we obtain

tr(Ã) =
∫ ∞

0
tr

(
[Γ(A0)]

−1
[
G

(
etA0x0

)(
etA0x0

)T
])

dt

=
∫ ∞

0
tr

((
[Γ(A0)]

−1G
(
etA0x0

))(
etA0x0

)T
)

dt.
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Figure 4. Vector field of the optimal linear system (5.7)

Now since[Γ(A0)]
−1G

(
etA0x0

)
=: C is a column vector and

(
etA0x0

)T =: L is a row vector,
and by taking account of tr(CL) = tr(LC) = LC, we find

tr(Ã) = a
∫ ∞

0
Φ

(∥∥etA0x0
∥∥)(

etA0x0
)T

[Γ(A0)]
−1(

etA0x0
)

dt.

The terms inside this last integral are positive, and thus tr(Ã) depends on the sign ofa so
that the sign of the trace is related to that of the perturbationG by

sgn
(

tr(Ã)
)

= sgn(a).

This completes the proof.

Remark6.2. Moreover, by a calculation already realized in the work of Benouaz and Arino
[1], we have

tr(r(Ã))≤ aC(O(‖x0‖))≤ aO(‖x0‖).

This shows the influence of the initial conditions on the study of the stability of the equi-
librium point under consideration. This result is important in the sense that it suggests the
possibility to find a result for stability (in the case of center) by studying the trace of the
optimal matrix. Further examples show similar results.

7 Bifurcation Analysis

In this section we use the numerical continuation and bifurcation package AUTO2000 [7]
in order to analyze the stability and the branches of periodic solutions in the neighborhood
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Figure 5. Vector field of the nonlinear system (5.6)

of the nonhyperbolic equilibrium point zero with purely imaginary eigenvalues of the non-
linear system (5.1), wherea is taken as bifurcation parameter. The presented numerical
results show the existence of an Andronov–Hopf bifurcation for the value of the parameter
a = 0.

In order to compare the results of the optimal derivative method to those obtained from
the analysis by the numerical continuation and bifurcation package AUTO2000, we analyze
the nonlinear system by changing the variables to polar coordinates. Let

x1 = r cos(θ) and x2 = r sin(θ).

To derive a differential equation forr, we note

x2
1 +x2

2 = r2 so that x1ẋ1 +x2ẋ2 = r ṙ.

Using the equations (5.1), we obtain

r ṙ = x1
(
x2 +ax1(x2

1 +x2
2)

)
+x2

(
−x1 +ax2(x2

1 +x2
2)

)
= a

(
x2

1 +x2
2

)2
= ar4.

so that
ṙ = ar3.

Using this and again the first equation in (5.1), we find

x2 +ax1r2 = x2 +ax1
(
x2

1 +x2
2

)
= ẋ1 = ṙ cos(θ)− r θ̇sin(θ)

= ar3cos(θ)− r θ̇sin(θ) = ax1r2− θ̇x2
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Table 1. First Run

BR PT TY LAB PAR(0) L2-NORM U(1) U(2)
1 1 EP 1 -1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 10 HB 2 1.00000E-17 0.00000E+00 0.00000E+00 0.00000E+00
1 20 EP 3 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

so that
θ̇ =−1.

Thus the radial and angular motions are independent. This shows that ifa< 0, thenr(t)→ 0
monotonically ast → ∞. In this case, the origin is an asymptotically stable spiral. If
a = 0, thenr(t) = r0 for all t and the origin is a center. Finally, ifa > 0, thenr(t) → ∞
monotonically and the origin is an unstable spiral.

Using the numerical continuation and bifurcation package AUTO2000, we obtain Fig-
ures 6 and 7, representing the bifurcation diagram for system (5.1) witha as the bifurcation
parameter. Executing Auto2000 gives the information in Table 1 (first run) and Table 2
(second run). In Tables 1 and 2, BR stands for branching point, PT for the point number,
TY for the solution type, PAR(0) for the bifurcation parametera, LAB for the label of the
solutions, and U(1), U(2) for the variablesx1 andx2. The bifurcation diagram Figure 6

Figure 6. Bifurcation Diagram of System (5.1)

shows that whena < 0, all solutions spiral clockwise into the origin with increasingt. In
this case the origin is an asymptotically stable spiral (see Figure 2 obtained by the opti-
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Table 2. Second Run

BR LAB PAR(0) L2-NORM MAX(1) MAX(2) PERIOD
-2 4 1.149038E-14 4.00000E-01 3.999710E-01 3.999660E-01 6.283185
-2 5 2.480256E-15 9.00000E-01 8.999145E-01 8.998845E-01 6.283185
-2 6 9.969503E-16 1.40000E+00 1.399865E+00 1.399828E+00 6.283185
-2 7 5.206941E-16 1.90000E+00 1.899815E+00 1.899772E+00 6.283185
-2 8 4.38281E-16 2.00000E+00 1.99981E+00 1.99976E+00 6.283195

mal derivative system). Fora = 0, at the pointHB, the character of the solutions changes.
HB stands for Hopf bifurcation (Table 1) with change of stability. This change is usually
accompanied with the appearance of a periodic orbit encircling the equilibrium point. In
this case, all solutions are periodic so that the origin is a center. Since at this value of
the parameter there are periodic orbits encircling the origin, these solutions are unstable
or their stability is unknown (labeled respectively 4, 5, 6, 7, 8 in Table 2). Fora > 0 the
origin becomes unstable and all solutions spiral clockwise without bounds (see Figure 5).
Figure 7 is the summary of the stability analysis obtained by Auto2000 (more detailed re-

Figure 7. Bifurcation diagram. Solid curves: stable solution. Dashed curves: unstable
solutions and solutions of unknown stability

sults are saved in the numerical data-files) and a confirmation of the results obtained using
the optimal derivative of the two-dimensional system (5.1), because fora < 0 the origin is
asymptotically stable (the solid curve in Figure 7) and the real parts of the eigenvalues (5.5)
are negative, and fora > 0 the real parts of the eigenvalues (5.8) become positive and the
origin is unstable (dashed curve in Figure 7).
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8 Conclusion

In conclusion, the answer to the question relative to the relation between the property of
stability of the linear equation obtained by the optimal derivative and that of the nonlinear
equation in the vectorial case is very subtle. Generally, when the procedure converges, the
matrix obtained is stable. All these considerations bring us to the following conjecture.

Conjecture8.1. If the procedure of the optimal derivative converges and the limit of the
sequenceA j is exponentially stable (or ifA j has a stable fixed point), then the nonlinear
system is stable.

This study shows that the conditions under which the conjecture was formulated can be
satisfied, i.e., the existence, uniqueness and convergence towards a stable fixed point [4].
The procedure of calculation also enables us to solve problems where the classical lineariza-
tion may not be useful. The bifurcation analysis using the numerical continuation and bifur-
cation package AUTO2000 confirms the results obtained by the optimal derivative. It also
shows its potential to be a tool for analyzing the stability of this type of two-dimensional
nonlinear ordinary differential equations.
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