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Computational Approach of the Optimal
Linearization of the Nonlinear O.D.E:

Application to Non

linear Electronic Circuit

A. CHIKHAOUI, T. BENOUAZ and A.CHEKNANE

Abstract— The aim of this paper is to present a generalization
of the optimal linearization. This method enables u associate
a linear map to a nonlinear ordinary differential equation. Our
results show clearly the existence and the unicitgf the best
optimal linearization in the sense of the least sgue. We use an
approach to associate a linear optimal equation ta nonlinear
equation in the neighbourhood of zero, even thougthe equation
cannot be linearized around the origin using the Fechet
derivative. An application is done to analyze the &haviour of an
electronic circuit..

Index Terms—  Electronic  circuit, Least
approximation, Nonlinear ODE, Optimal linearization.
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I. INTRODUCTION

The linearization method plays an important ratetlie
analysis of systems (ex: Electronic circuit in emgiring...),
modeled by nonlinear ordinary differential equatidrhe
principal method when studying behavior and stgbidf
solutions of an ordinary differential equation et
neighborhood of an equilibrium point considerslthear
equation obtained by differentiating (at the Frecemse) the
nonlinearity of a nonlinear equation at this posimilar
behavior is encountered in the hyperbolic case.
However, there are three setbacks to this methipd1[R

1. If the nonlinearity is not smooth enough in th
neighborhood of a stationary point, then, in gehevae
cannot compute the Frechet derivative.

2. The derivative of the nonlinear equation to feat zero.

3. Case where the eigenvalues are purely imaginary.
The behavior of the solution of the nonlinear etumatn
the neighbourhood of such a point can be anytHimghe
present work, we propose a method which assodidliesar
map to a nonlinear ordinary deferential equatioarnée
equilibrium point, defined as a generalization & tptimal
linearization. It is a sort of a global linearizatiby opposition
to the nonlinear perturbation of a linear equatiwhijch is
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different from the classical linearization in thieimity of a

stationary point. The following approach is the eypf

optimization. Our results are in the line of therkvdy

Vujanovic [12] and Jordan et al.[7], [8]. The fisgtctions are
devoted to present a general formalism to applyottémal

linearization method in the scalar and vectoriainf®. In the
last sections, an application is considered tcstitate the
theoretical procedure with comments.

Il. THEORETICAL FRAMEWORK

A. Formulation of the problem

Consider the following nonlinear ordinary differeht
equation
dx
= F(x(t)). x()

— 1
at @)

X

Where:X = (X1, ..., Xn)s the unknown functian
F = (f1, ..., fn)is a given function on an open subselfof
with the assumptions:

H1) F (0) =0.

eH2) The spectrura (DF (x)) is contained in the set

{Z: Rez< O} for everyx = 0, in a neighbourhood of 0, for
which DF (x) exists.

H3) F isy Lipschitz continuous.

Our purpose can be formulated as follows:

Find a linear ordinary differential equation of fleem

dx

i Ax(t) , x(O)

Xo- )

Where AOM h (IR), is to be determined in such a way that

it has the same behavior that the nonlinear equétij both
(1) and (2) having the same initial value, by miizimg with
respect tA the functional

6(A)= [ F (x(t) - Axt)|

AOM,, (IR).
At the beginningx is just any function defined c{>®,+oo [

®3)

bounded,  continuous  such  thatxOL! (0,+oo)

and F (x())OL* (0+e) . Later on, we will consider the
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functionx (t) that is solution of a linear equation.
This approach is the optimization in the least sgs&nse.

The existence and unicity of the solutiérin the least square
sense are guaranteed by general theorems of apyaiom
[11], [10] and [6].

B. Formalism

Differentiating the functional (3) with respectAcalong a
functionx, yields

Aa=2["(At) - F(x(t)).a

for every matrixa . In particular, for matrices such as
am=1; a; =0,if (i,j)=(.m).
We have

J, (Axt)-

x(t)dt @

F(x(t)),a x(t)) dt=

= [, [A0) - FO) )] %o t)at

()

Assuming tha minimizes (3) along a given functianthe
guantities

J, [Axt)-F

are equal to zero, which leads to

Za (7% O, ()]

)], x,E)dt,m<l,msn (6)

- Uo " () % (t)dtj (7)

1<j,ms<n 1<l m<n

with obvious notations for the elements of makix
Introducing valued functiorh‘(x)defined by

t)dt)ls - (8)

and assuming that (x) is non singular, we obtain

A= [ TR (O et (3] o

r()= [ x@xQ dt= [ [ % (0

If the inverse matrix ofl exists, thenA is uniquely
determined.

C. Procedure

The resolution procedure is implemented in two stdje
initial matrix is the Jacobian matrix of Fxt wherex, is an
arbitrary point in a neighborhood of 0, such tBd# (xg)
exists.

Consider the system (1)

= F (1), 40)=x,
First step:

Compute Ag= DF(XO)
Second step:
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To computeA from A, we first solve

X A v(), v(0)=x

a

(10)

letting Y, to be the solution of (10). The minimization oéth
functional in the least square sense

6la)=[ " IFly(0)-Ay@)] ot @)

yields ;&
A is uniquely determined by formula (9). It can kritten as

A= ljg ® [F (e%txo)].[e’*’txordtj

1,12
el ol

By definition, ;& provides the optimal linearization &f at
Xg -

Ill. PROPERTIES OF THE METHOD

A. Case where the application F is linear

If F is linear withc (F) in the negative part of the complex
plane, (7) reads

Ar(x) = Fr(x) (13)

Itis clear tha®A = F is solution. It is unique if the inverse of
I'(X) exists.
The optimal linearization of linear system is tlgstem itself.
B. General case

Consider the more general system of nonlinear ensat
with a nonlinearity of the form

F(x) = Mx+F(x), x(0) = x,

whereM is linear.

(14)

The computation of the matriA gives

A=| [F (I ot fIr (7, as)

which can be written as

= [ur(0+( [ F (<)

And finally .
A=m | [ F I a1, @
Hence, A=M + Z&with
[Ix( o]

A=|[F 6 W, @9

If, in particular, some componentsofare linear, then the

lixt a)

—

r(x)]™, (6)

[ (

corresponding components bf are zero

@~
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And those ofA and F are same. Iff, is linear, then the this case, the functioX — V(X) = Xza(X) is a Lyapunov

k™ row of the matrix;&is equal tofk. function for the nonlinear equation (19).Indeedx(t) is a

Scalar case solution of equation (19), diﬁerentiatirléx(t))za(x(t))J
We will now give the expression of the optimalyith respect td, we obtain
linearization in the scalar case. For this, cormsitie
following nonlinear scalar equation d )

o (Pal)]= (1) en

o tix() 0)=%, a9 a
Where f : IR - IR and satisfies the following conditions Since, on the other hand(x) < 0O(in view assumptiorH1
H1) f(0)=0. and H2 in section 4), we obtain thar(x(t)) -0 as
H2) f'(0)<0 at every point wheref'(x) exists in an t _, +oo, therefore,x(t) ~ Oast - +.
interval ]— a,+a[,a >0.
H3) f is absolutely continuous with respect to the Lghes
measure. IV. ORDER OF LINEARIZATION
ChooseX, D]— a +a[ such thatf '(XO) exists. To estimatetheorder of the linearization, we will evaluate
Seta, = f '(XO) and use the method presented in section 2.
We solve the linear equation

§1e functional
dx

G(A)=["|F(yt)-Ay()]" dt
— = 0)= 20 0
g @) =% e
Whose solution is
X(t) — e(aot)xo 1) WhereA is any matrix. Starting from an arbitrary mathix
the optimal matrix giving the optimal linearizati@obtained

Substitutingf for F in expression (9), we get by minimizing the functional

_ Uomf(e%txo)e%tdt) 1 .
T ea % @ oWl
0

ForX, 20, f (X(t)) is almost everywhere differentiable ~ Where Yy, (t) is the solution of equation
and

F (v, (£)- Ay, (t)] *dt. (29)

%[f(ea"txo)]:f'(ea"txo %8 (23) dy_Aoy()

This gives
+00 1 » | | | i
.[0 f (X(t))gaotdt = —[f (x(t))eaot ]o _ We have the following relation ship betweénandA
e ~ ~ _ /|2
—I (7 (x(t))e™ dt) x,2%, [|FEE)-ATW)] dts
(24) <["IFF)-AT0)] at
From which we obtaira i
f () where y( )is the solution of equation
a= 2[ + aoj Z%tdtj (25) dy
) =AY
Changing the variableto X(t) in the integral, we obtain Consequently
e ~ ~ /2
LORINIO 2o b |FOE)-AV(E)] dt=
XO 0

nf IR ) -ATE)
a(xo)is the result of the optimal linearization in thealsr

case. DAOM (R), such asREg(A) O ]— 00,0[.
Remark: The role of the optimal approximation in the study
of stability [5] is evidenced in the scalar caseh®/fact that in In particular, for A = DF(O)’ we have
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+00 - ~ 2

[7FEE)-AFE)| dt< R R
<["|F(Ft)-DFO)¥ )|’ dt u [

| L | F(¥(t)-DFO)¥ ()] 3 Lo .
With the assumptions
[7(0) = Clx| and| F ()~ DF (0)x| = ol R NowLinear
we obtain Fig.1. Electronic circuit with a nonlinear resistan

. _ - ) , This c.irc.uit -conta.ins a nonlinear resistance .Whose
J'O F (y (t))— Ay (t)H dt< 00|Xo|| )2 (30) characteristic (Fig.2.) is represented by a nonleggunction

(absolute value type)

We will now evaluate the differen4|9((t)— y(t)|| wherex v = RO(iN +|in |) (35)

is the solution of eq. (1) anﬁ the solution of the optimal
linear equation, both having the same initial vall¥e have

9 o)~ Ay
dt dt (31) 8-
= F(x{t) - F(¥(t) + F((t) - AV(t). N
From assumptiokl3 in section 4, we have Vy 4l
d ~ ~ ~ ~_ _
S Ix0)= 50 = M) - 50 +[F (5) - A )| ?
(32) o]
and using the Gronwall's lemma, we obtain 6 7 5 0 5 2 6
~_ iN
[x(t)- () < [ e*|F (7(s) - A¥(s)as o - |
. B (33) Fig.2. Nonlinear characteristic of the resistance
C2r-94e )2[ (e (5N = Av(<Y s |2 Th tions of state defining this syst
< (J‘O et ds) UOHF(y(S)) Ay(s)” dsj _ e equations of state defining this system are
dx__Ri+Rs*Ry &|X|_&y
For everyT > 0, there existdM = O such that: dt Ly Ly Ly 36
2 dy_ Ry, Ry*Ry o
IX(t) - ()| < M|x,| for O<t<T (34) t L, L,

And every ¥ in the neighbourhood of 0, independenfof Where
The optimal linearization method is of order twohagher
with respect the initial value. X=iL,
More generally, it has the same order as the neatity. y=i
=i,
V. APPLICATION (37)

In this section, we present an example to illustrate the
usefulness of the theory presented in sectionTis is the
case where the nonlinearity is not smooth enougir tte
steady state and consequently, the system canfinebeized dx

We normalize the component values of the circuit tnd
the system (36) becomes

at 0 using the classical linearization. dt =—3X _| X| -y

Consider the circuit in Fig.1. q (38)
&Y - _x-2 y.
dt

We compute first the Jacobian matbi(x).
For (xo ,Yo)=(05,0.3)
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B 4 _1 Curve(l)
DF (XO ! yo) = ’ (39) %0 ® Curve(2)
-1 -2 3
0,25 H
the optimal derivative can be written 020 1
~ | —3.9524 -1.0686 S o5+
- : (40)
-t "2 7 Fig.6.
lllustrate graphically the results obtained abdie, Fig.4, 7 /
Fig.5 and Fig.6, represent, as function of timspeetively, 0,00 e eee s e e e T T -
0 == "2"""3 7737775 7 8 9 10 11

the solutions(x(t), y(t)) of the nonlinear system (38),
compared to the solutions of the optimal lineatesys(40),
for the initial conditions(xo,yO)Z(0.5,0.3). And the

quadratic error between the nonlinear system (38) the
optimal linear system (40).

0,54 .
0,4
03 Curve(1)
' e Curve(2)
x(H)
0,24
Fig4.
0,1 /
0,0 ;"" """""""""JI ........
T T T T T T T T T T T T T T T T T T T 1
-1 0 1 2 3 4 5 6 7 8 9 10
Time

Fig.4. The variation of the solution x(t) as a ftiog of time for the initial
(Xov Yo ) = (0-5'0-3)

conditions

of system (38)

0,000 o

Curve (1)
e Curve(2)

-0,002

x(t)

-0,003 +

-0,004 +

-0,005 ; . . T ; T ; T ; |

Time

Fig.5. The Zoom of a part of the solutions x(t) &han the Fig 4.

Curve (1): corresponds to the solution

Time

Fig.6. The variation of the solution y (t) as adtian of time for the initial
conditions (XO Yo ) = ( 0'5’0'3)

Curve (1): corresponds to the solution of syste8) (3
Curve (2): corresponds to the solution of syste@) (4

Curve(l)
Curve(2)

0,0030 -
- -

0,0025+
0,0020+4

0,0015-

y(@®

0,0010 -

0,0005 -

0,0000+

Time

Fig.7. The Zoom of a part of the solutions y(t) ®han the Fig.6.

1,0x10°

8,0x10° 4

6,0x10°

Quadratic Error

4,0x10° -

2,0x10°

00

Time

Fig.8. the quadratic error as function of time kegiw the nonlinear system
(38) and the optimal linear system (40)

VI.

The example presented in section 6 shows the
opportunity given by the optimal linearization tdudy

DiscUSSIONS
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behavior of the nonlinear system in the neighbodhob O
when the classical linearization can be anythingact, the
Fig.4, Fig. 6, (solutions), Fig.8. (quadratic ejrpresented
satisfactory adequacy of approximate results coetptr the
exact ones. This is confirmed by the computatiorthef
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higher with respects the initial value, and is galte of the

same order as the nonlinearity. The method enaldet

associate a linear optimal equation to a nonliegamation in

the neighbourhood of 0, even though the latter ggua

cannot be linearized around the origin using thechket

derivative. This is the case notably when the fiomst

involved are not smooth near the origin.
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