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Abstract

The aim of this paper is to present the relationship between the classical lineariza-
tion and the optimal derivative of a nonlinear ordinary differential equation. An
application is presented using the quadratic error.
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1. Introduction

The study of stability of the equilibrium point of a nonlinear ordinary differential equation
is an almost trivial problem if the function F which defines the nonlinear equation is
sufficiently regular in the neighborhood of this point and if its linearization in this point
is hyperbolic. In this case, we know that the nonlinear equation is equivalent to the
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linearized equation, in the sense that there exists a local diffeomorphism which transforms
the neighboring trajectories of the equilibrium point to those neighbors of zero of the
linear equation. On the other hand, the problem is all other when the nonlinear function
is nonregular or the equilibrium point is the center.

Consider the nonregular case. Imagine the case when the only equilibrium point is
nonregular. In this case, we cannot derive the nonlinear function and consequently we
cannot study the linearized equation. A natural question arises then: Is it possible to
associate another linear equation to the nonlinear equation which has the same asymptotic
behavior?

The idea proposed by Benouaz and Arino is based on the method of approxima-
tion. In [2, 5–8], the authors introduced the optimal derivative, which is in fact a global
approximation as opposed to the nonlinear perturbation of a linear equation, having a
distinguished behavior with respect to the classical linear approximation in the neigh-
borhood of the stationary point. The approach used is the least square approximation.

The aim of this paper is to present the relationship between the optimal derivative and
Fréchet derivative in the equilibrium point. After a brief review of the optimal derivative
procedure in the second section, the third section is devoted to the study of the relationship
between the optimal derivative and Fréchet derivative in the equilibrium point in the scalar
and vectorial case. In particular, in the scalar case, we prove for a class of functions that
the optimal derivative can be computed even though the classical linearization in 0 does
not exist. In the last section, we present applications and comparison using the quadratic
error. The study shows, in particular, the influence of the choice of initial conditions.
In the appendix, we have presented the details of the proof for the example in the case
where the nonlinear function is not regular in 0.

2. The Optimal Derivative

2.1. The Procedure

Consider a nonlinear ordinary differential problem of the form

dx

dt
= F(x), x(0) = x0, (2.1)

where

• x = (x1, . . . , xn) is the unknown function,

• F = (f1, . . . , fn) is a given function on an open subset � ⊂ R
n,

with the assumptions

(H1) F(0) = 0,

(H2) the spectrum σ(DF(x)) is contained in the set {z : Rez < 0} for every x �= 0, in
a neighborhood of 0 for which DF(x) exists,
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(H3) F is γ -Lipschitz continuous.

Consider x0 ∈ R
n and the solution x of the nonlinear equation starting at x0. With all

linear A ∈ L(Rn), we associate the solution y of the problem

dy

dt
= Ay(t), y(0) = y0,

and we try to minimize the functional

G(A) =
∫ ∞

0
‖F(y(t)) − Ay(t)‖2 dt (2.2)

along a solution y. We obtain

Ã =
(∫ ∞

0
[F(x(t))][x(t)]T dt

) (∫ ∞

0
[x(t)][x(t)]T dt

)−1

. (2.3)

Precisely, the procedure is defined by the following scheme: Given x0, we choose a first
linear map. For example, if F is differentiable in x0, then we can take A0 = DF(x0) or
the derivative value in a point in the vicinity of x0. This is always possible if F is locally
Lipschitz. If A0 is an asymptotically stable map, then the solution starting from x0 of
the problem

dy

dt
= A0y(t), y(0) = y0

tends to 0 exponentially. We can evaluate G(A) using (2.2) and we minimize G for all
matrices A. If F is linear, then the minimum is reached for the value A = F (and we
have A0 = F ). Generally, we can always minimize G, and the matrix which gives the
minimum is unique. We call this matrix A1 and replace A0 by A1, we replace y by
the solution of the linearized equation associated to A1, and we continue. The optimal
derivative Ã is the limit of the sequence build as such, and it is given by (2.3) (for details
see [2, 5–7]).

2.2. Properties of the Procedure

We will now consider situations where the procedure converges.

Influence of the choice of the initial condition

Note that if we change x(t) to z, then the relation (2.3) can be written as

Ã

∮ x0

0
zdzT =

∫ x0

0
F(z)dzT ,

where
∮ x0

0
is the curvilinear integral along the orbit γ (x0) = {eBt : t ≥ 0} of x0. We

obtain

Ã =
(∮ x0

0
F(z)dzT

) (∮ x0

0
zdzT

)−1

.

It is clear that the optimal derivative depends on the initial condition x0.
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Case when F is linear

If F is linear with σ(F ) in the negative part of the complex plane, then the procedure
gives F at the first iteration. Indeed, in this case, (2.3) reads

A�(x) = F�(x)

and it is clear that A = F is a solution. It is unique if �(x) is invertible. Therefore, the
optimal approximation of a linear system is the system itself.

Case when F is the sum of a linear and nonlinear term

Consider the more general system of nonlinear equations with a nonlinearity of the form

F(x) = Mx + F̃ (x), x(0) = x0,

where M is linear. The computation of the matrix A1 gives

A1 =
[∫ ∞

0
[F(x(t))][x(t)]T dt

]
[�(x)]−1

=
(

M�(x) +
∫ ∞

0
[F̃ (x(t))][x(t)]T dt

)
[�(x)]−1

= M +
(∫ ∞

0
[F̃ (x(t))][x(t)]T dt

)
[�(x)]−1 .

Hence, A1 = M + Ã1 with

Ã1 =
(∫ ∞

0
[F̃ (x(t))][x(t)]T dt

)
[�(x)]−1 .

Then, for all j we have Aj = M + Ãj with

Ãj =
(∫ ∞

0
[F̃ (xj (t))][xj (t)]T dt

) [
�(xj )

]−1
.

If, in particular, some components of F are linear, then the corresponding components
of F̃ are zero, and the corresponding components of Aj are those of F . If fk is linear,
then the kth row of the matrix Aj is equal to fk.

3. Relationship between the Optimal Derivative and the Classical
Linearization in Zero

3.1. Scalar Case

Expression

Consider the scalar differential problem

dx

dt
= f (x), x(0) = x0 (3.1)
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with f : R → R and under the assumptions

(h1) f (0) = 0,

(h2) f ′(x) < 0 in every point where f ′ exists in an interval (−α, α) with α > 0,

(h3) f is absolutely continuous with respect to the Lebesgue measure.

The calculation is done in a way similar to that of the vectorial case. We start with the
calculation of a0 = f ′(x0), then we calculate a1 by solving the problem

dx

dt
= a0x, x(0) = x0.

By changing F to f in (2.3), we have

a1 =
∫ ∞

0 f (x(t))x(t)dt

x0
∫ ∞

0 x2(t)dt
,

and by substituting x = exp(a0t)x0, we obtain

a1 =
∫ x0

0 f (x)dx∫ x0
0 xdx

= 2

x2
0

∫ x0

0
f (x)dx.

Note that a1 does not depend on a0, and consequently, the procedure for the optimal
derivative converges in the first step, namely

ã = ã(x0) = 2

x2
0

∫ x0

0
f (x)dx. (3.2)

We remind the reader that it has been shown that ã(x0) is a Lyapunov function [8] for
the nonlinear problem (3.1). The scalar case is very interesting in the sense that we can
write the optimal derivative as a function of the classical linearization of f in 0 (if f ′
exists in 0); so it is possible to find a limit when x0 → 0, namely ã(x0), even though the
derivative of f in 0 does not exist. The importance of the result lies in the possibility
of using ã(x0) for the description of the behavior of the solution and for the study of
stability in the vicinity of 0 when the derivative in this point does not exist.

Case when the derivative of f in 0 exists

If f is continuous and if the derivative of f in 0 exists, then it is known [2] that ã(x0)

can be written as

ã(x0) = f ′(0) + 2

x2
0

∫ x0

0
zε(z)dz, where ε(z) = f (z)

z
− f ′(0)

and that lim
x0→0

ã(x0) = f ′(0). This relation shows that the two quantities ã(x0) and f ′(0)

are almost equal and are equal in the limit as x0 tends to 0.
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Case when f is analytic in 0

Now assume that f is analytic in 0, i.e.,

f (x) =
∞∑

n=1

f (n)(0)

n! xn. (3.3)

Then it is possible to give an expansion of ã(x0) similar to the Taylor expansion of f

in the neighborhood of 0. For this, we use the relation (3.2) and replace f (z) by the
expression given by relation (3.3) so that

ã(x0) = 2

x2
0

∫ x0

0

∞∑
n=1

f (n)(0)

n! xndx = 2
∞∑

n=1

f (n)(0)

(n + 1)!x
n−1
0

= f ′(0) + 1

3
x0f

′(0) + . . . + 2

(n + 1)!x
n−1
0 f (n)(0) + . . . ,

where this formula holds in the interval of convergence of the Taylor series in 0. Gener-
ally, if f is of class Ck with k ∈ N in the vicinity of 0 and f (0) = 0, then ã is of class
Ck−1 in this vicinity, and we obtain

ã(j)(0) = 2

(j + 1)!x
j−1
0 f (j)(0), 0 ≤ j ≤ k − 1.

Case when f is not regular in 0

We now consider the nonregular case, and more particularly the case that f is only
nondifferentiable in 0. Writing f (z) in the form

f (z) = −zg(z),

the relation (3.2) becomes

ã(x0) = − 2

x2
0

∫ x0

0
zg(z)dz. (3.4)

The chosen function
gr(z) = p(| ln z|r ),

where p is a bounded nonnegative periodic function of period 1 with p̄ =
∫ 1

0
p(z)dz >

0, is nondifferentiable in 0. The relation (3.4) is written for r = 1 and 0 < x0 < 1 as

ã(x0) = − 2

x2
0

∫ x0

0
zp(| ln z|)dz.
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For all α ∈ (0, 1), we have

ã(αx0) = − 2

α2x2
0

∫ αx0

0
zp(− ln z)dz

= − 2

α2x2
0

∫ x0

0
α2zp(− ln α − ln z)dz

= − 2

x2
0

∫ x0

0
zp(− ln α − ln z)dz.

So in particular, if ln α = −1, i.e., α = e−1, then ã(x0/e) = ã(x0). In this case, ã(x0)

does not have a limit when x0 → 0+. In the case r > 1, we obtain

ãr (x0) = −2
∫ 1

0
zp((− ln x0 − ln z)r)dz.

Let us now consider the relation

ãr (x0) = − 2

x2
0

∫ x0

0
ugr(u)du, (3.5)

where gr(u) = p(| ln u|r ). Note that gr(u) is nondifferentiable in 0. In this case, we
will show that the optimal derivative (3.5) can exist even if the derivative of the function
gr(u) in 0 does not exist. Then

ãr (x0) → −p̄ when x0 → 0 for every r > 1.

For more details, see the proof given in the appendix.

3.2. Vectorial Case

Let us suppose that the sequence Aj given by

Aj =
(∫ ∞

0

[
F

(
etAj−1x0

)] [
etAj−1x0

]T
dt

) (∫ ∞

0

[
etAj−1x0

] [
etAj−1x0

]T
dt

)−1

converges to the optimal matrix and that the derivative DF(0) of F in 0 exists. In this
case, we can write

F(x) = DF(0)x + o(|x|). (3.6)
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Replacing the relation (3.6) in (2.3) and using the properties of the optimal derivative
from [2, 5], we find

Ã =
[∫ ∞

0
[DF(0)x(t) + o(|x(t)|)] [x(t)]T dt

] [∫ ∞

0
[x(t)][x(t)]T dt

]−1

= DF(0)

[∫ ∞

0
[x(t)][x(t)]T dt

] [∫ ∞

0
[x(t)][x(t)]T dt

]−1

+
[∫ ∞

0
[o(|x(t)|)][x(t)]T dt

] [∫ ∞

0
[x(t)][x(t)]T dt

]−1

= DF(0) +
[∫ ∞

0
[o(|x(t)|)][x(t)]T dt

] [∫ ∞

0
[x(t)][x(t)]T dt

]−1

,

where [∫ ∞

0
[o(|x(t)|)][x(t)]T dt

] [∫ ∞

0
[x(t)][x(t)]T dt

]−1

= o(1),

i.e., a quantity which tends to 0 when x0 → 0, by supposing that |x(t)| remains of the
order of x0.

4. Application

The precision of the optimal derivative is expressed in terms of the norm of the initial
condition x0 [8] and is given by

‖x(t) − ỹ(t)‖ < O(‖x0‖)2.

The goal is to try to show for which initial conditions the precision is maintained. As
long as ‖x0‖ is large in a certain sense, the approximation must be good. It becomes
more difficult when approaching 0. Indeed, it is shown that the approach of 0 yields
inversion of the quadratic error to the profit of the classical linearization. This shows,
that the classical linearization is better near the origin when it exists. Let us present
examples emphasizing the theoretical aspect in relation to the influence of the choice of
the initial conditions on the quality of the approximation.

4.1. Computational Procedure

First of all let us point out briefly the iterative procedure allowing the calculation of
the optimal derivative. Starting the calculus, the point x0 is selected arbitrarily near the
origin. The differential equations have been solved using the fourth order Runge–Kutta
method [13, 16].

• Input x0 and A0.

• Level (I): Computation of A1 in terms of A0:

A1 =
[∫ ∞

0

[
F

(
eA0t x0

)] [
eA0t x0

]T
dt

] [∫ ∞

0

[
eA0t x0

] [
eA0t x0

]T
dt

]−1

.
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• Level (II): Computation of Aj in terms of Aj−1:

Aj =
[∫ ∞

0

[
F

(
eAj−1t x0

)] [
eAj−1t x0

]T
dt

]

×
[∫ ∞

0

[
eAj−1t x0

] [
eAj−1t x0

]T
dt

]−1

.

• Level (III): Computation of ∥∥Aj − Aj−1
∥∥ .

• Level (IV): If ∥∥Aj − Aj−1
∥∥ < ε,

where ε is the desired level of approximation, then set Ã = Aj . Ã is the optimal
derivative of F at x0. Otherwise set Aj−1 = Aj and go to Level (II).

4.2. Example

The function of the electronic circuit (see [11]) in Figure 1 is represented by two variables
of states (the voltage drop Vc1 on the terminal of the first capacity and the voltage drop
Vc2 on the terminal of the second capacity). The nonlinearity is due to the use of a
nonlinear diode.

Figure 1: Circuit used in the example

When a tension Vc is applied to the diode in the direct direction, the model of the
diode is given by

f (Vc1) =
{

0 if Vc1 < 0

aVc1 + bV 2
c1 + dV 4

c1 if Vc1 ≥ 0.



50 Tayeb Benouaz and Martin Bohner

With the parameters

R = 33 · 102�, C1 = 220 · 10−4F, C2 = 350 · 10−4F,

a = 10−4, b = 10−5, d = 10−6

and starting from the laws of Kirchhoff relating to the nodes and the meshes of the circuit,
we obtain the equations


dVc1

dt
= − 1

C1

(
aVc1 + bV 2

c1 + dV 4
c1 + Vc1 − Vc2

R

)
dVc2

dt
= 1

RC2
[Vc1 − Vc2] .

(4.1)

Changing
x = Vc1 and y = Vc2,

the system (4.1) can be rewritten as


dx

dt
= − a

C1
x − b

C1
x2 − d

C1
x4 − 1

RC1
x + 1

RC1
y

dy

dt
= 1

RC2
x − 1

RC2
y.

By replacing the parameters with their values, the system becomes


dx

dt
= −

(
1.8 · 10−2x + 4.55 · 10−5 (

10x2 + x4) − 1.38 · 10−2y
)

dy

dt
= 8.66 · 10−3(x − y).

(4.2)

Classical linearization

The classical linearization at the equilibrium point (0, 0) is obtained by calculating the
Fréchet derivative of the nonlinear function of the system (4.2),

DF(0, 0) =
[−1.8 · 10−2 1.38 · 10−2

8.66 · 10−3 −8.66 · 10−3

]
.

Optimal derivative

The optimal derivative is obtained by applying the algorithm proposed above, see Section
4.1. For the quadratic error, we use the relation

EQ =
n∑

i=1

‖xi(t) − ỹi(t)‖2 ,

where
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• x(t) represents a solution of the nonlinear system,

• ỹ(t) represents a solution of the optimal derivative.

Results of the method

We study the system using several initial conditions. The results obtained are exhibited
in the following table, where EQmax (O.D.) and EQmax (C.L.) represent the maximum
quadratic errors for the optimal derivative and the classical linearization, respectively. In
the left column the initial conditions (x0, y0) are given. The second column represents
the optimal derivative Ã.

(x0, y0) Ã EQmax (O.D.) EQmax (C.L.)

(8e − 01, 5e − 01)

[−0.0187 0.0142
0.0087 −0.0087

]
2.1302e − 04 3.5140e − 04

(8e − 02, 5e − 01)

[−0.0181 0.0138
0.0087 −0.0087

]
7.5438e − 06 1.0367e − 05

(8e − 02, 5e − 02)

[−0.0181 0.0138
0.0087 −0.0087

]
7.4729e − 09 2.2644e − 08

(8e − 03, 5e − 02)

[−0.0180 0.0138
0.0087 −0.0087

]
8.5925e − 10 1.0691e − 09

(8e − 03, 5e − 03)

[−0.0180 0.0138
0.0087 −0.0087

]
7.0425e − 13 2.2132e − 12

(8e − 04, 5e − 03)

[−0.0179 0.0138
0.0087 −0.0087

]
9.0836e − 14 1.0969e − 13

(8e − 04, 5e − 04)

[−0.0179 0.0138
0.0087 −0.0087

]
2.2657e − 17 1.3572e − 16

(8e − 05, 5e − 05)

[−0.0178 0.0138
0.0087 −0.0087

]
3.249e − 21 3.481e − 21

The curve
EQmax = h(‖x0‖)

in Figure 2 is obtained starting from a smoothing polynomial using the Origin software.
The determination of the value x0 for which the curve of error changes behavior will be
calculated is performed using the Matlab software.

In Figure 3, a zoom of the part where there is inversion of the quality of the approx-
imation to the profit of the classical linearization is represented.
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Figure 2: Max quadratic error with respect to the norm of the initial condition

5. Analysis of Results

The representation of the maximum quadratic error with respect to ‖x0‖ relating to the
classical linearization and the optimal derivative enables us to divide our curve into two
distinct parts:

• The first part, where the maximum quadratic error due to the classical linearization
is lower than that due to the optimal derivative on an interval of ‖x0‖ < 0.43. In
this case the classical linearization gives a better approximation than the optimal
derivative.

• The second part where the maximum quadratic error due to the classical lineariza-
tion becomes definitely higher than that due to the optimal derivative on an interval
of ‖x0‖ > 0.43. Here it is the optimal derivative which is better. Namely, for a
given initial condition x0, approximation by the optimal derivative is better in a
vicinity of the initial condition, while the classical linearization is better in the
vicinity of the origin. These two aspects reflect the fact that the linearization by
Fréchet derivative (when it exists and when it is hyperbolic) is the best approxi-
mation in the vicinity of the origin.

6. Appendix

By making the change of variable v = | ln u|r , we obtain

ãr (x0) = − 2

rx2
0

∫ ∞

| ln x0|r
e−2v1/r

p(v)v1/r−1dv.
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Figure 3: Zoom of the part where there is inversion of the quality of the approximation

We start by replacing x0 by a particular sequence of reals tending to 0, the sequence
e−k1/r

, with k ∈ N, k → ∞. For that, we note that if x0 is rather small, then there is a
unique k such that

k < | ln u|r < k + 1.

After some calculations, we find that there is a constant C independent of x0 such that

e−k1/r−Ck1/r−1
< x0 < e−k1/r

.

From this, we deduce in particular that

x2
0

e−2k1/r
→ 1 when x0 → 0. (6.1)

We now will calculate the limit of the ratio, when x0 → 0, of

ãr

(
e−k1/r

)
ãr (x0)

=
− 2

re−2k1/r

∫ ∞
k

e−2v1/r
p(v)v1/r−1dv

− 2
rx2

0

∫ ∞
k+1 e−2v1/r

p(v)v1/r−1dv
.

Because of (6.1), the ratio of the terms except the integrals in the right-hand side of the
equality tends to 1. We thus have

ãr

(
e−k1/r

)
ãr (x0)

∼
∫ ∞
k

e−2v1/r
p(v)v1/r−1dv∫ ∞

k+1 e−2v1/r
p(v)v1/r−1dv

= 1 +
∫ k+1
k

e−2v1/r
p(v)v1/r−1dv∫ ∞

k+1 e−2v1/r
p(v)v1/r−1dv

.

Suppose that 0 < m ≤ p(v) ≤ M < ∞. Then∫ k+1
k

e−2v1/r
p(v)v1/r−1dv∫ ∞

k+1 e−2v1/r
p(v)v1/r−1dv

≤ M

m

∫ k+1
k

e−2v1/r
v1/r−1dv∫ ∞

k+1 e−2v1/r
v1/r−1dv

. (6.2)
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The integrals on the right-hand side of (6.2) can be calculated using

∫ b

a

e−2v1/r

v1/r−1dv = r

∫ b1/r

a1/r

e−2wdw = r

2

(
e−2a1/r − e−2b1/r

)
. (6.3)

By (6.2) and (6.3), we obtain∫ k+1
k

e−2v1/r
p(v)v1/r−1dv∫ ∞

k+1 e−2v1/r
p(v)v1/r−1dv

≤ M

m

e−2k1/r − e−2(k+1)1/r

e−2(k+1)1/r

= M

m

(
e2((k+1)1/r−k1/r) − 1

)
→ 0 as k → ∞

since for q(x) = x1/r we have that for each k ∈ N there exists ξ(k) ∈ (k, k + 1) such
that

(k + 1)1/r − k1/r = q(k + 1) − q(k)

(k + 1) − k
= q ′(ξ(k)) = 1

r
(ξ(k))1/r−1 → 0, k → ∞

due to r > 1. Thus
ãr

(
e−k1/r

)
ãr (x0)

→ 1 as x0 → 0.

Hence ãr

(
e−k1/r

)
and ãr (x0) have the same limit as x0 → 0. This leads us to the study

of the behavior of

ãr

(
e−k1/r

)
= − 2

re−2k1/r

∫ ∞

k

e−2v1/r

p(v)v1/r−1dv.

By using the Fourier series of the function p(v) = p̄ + p̃(v), where p̄ =
∫ 1

0
p(v)dv

indicates the nonzero average value of p(v), we find

ãr

(
e−k1/r

)
= −p̄

2

re−2k1/r

∫ ∞

k

e−2v1/r

v1/r−1dv

− 2

re−2k1/r

∫ ∞

k

e−2v1/r

p̃(v)v1/r−1dv.

According to the relation (6.3),

−p̄
2

re−2k1/r

∫ ∞

k

e−2v1/r

v1/r−1dv = −p̄
2

re−2k1/r

r

2
e−2k1/r = −p̄

and thus

ãr

(
e−k1/r

)
= −p̄ − 2

r

∫ ∞

k

e2(k1/r−v1/r)p̃(v)v1/r−1dv. (6.4)
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The second term on the right-hand side of (6.4) can be written as −2Bk/r , where

Bk =
∫ ∞

k

e2(k1/r−v1/r)p̃(v)v1/r−1dv.

By making the change of variable v = k + w, we obtain

Bk =
∫ ∞

0
e2(k1/r−(k+w)1/r)p̃(w)(k + w)1/r−1dw,

and with the change w = kz, we have

Bk = k1/r

∫ ∞

0
e2k1/r (1−(1+z)1/r )p̃(kz)(1 + z)1/r−1dz. (6.5)

For the study of Bk, we break up the integral in (6.5) into a sum of two integrals as
Bk = B

(1)
k + B

(2)
k , where

B
(1)
k = k1/r

∫ ε

0
e2k1/r(1−(1+z)1/r)p̃(kz)(1 + z)1/r−1dz,

B
(2)
k = k1/r

∫ ∞

ε

e2k1/r(1−(1+z)1/r)p̃(kz)(1 + z)1/r−1dz.

We study initially B
(2)
k and show that it tends to 0. By using the inequality

1 − (1 + z)1/r ≤ −C(1 + z)1/r for z > ε > 0, C > 0, C = C(ε)

and by changing the variable v = k1/rC(1 + z)1/r , we find∣∣∣B(2)
k

∣∣∣ ≤ Mk1/r

∫ ∞

ε

e−2k1/rC(1+z)1/r

(1 + z)1/r−1dz

= Mr

C

∫ ∞

Ck1/r (1+ε)1/r

e−2vdv

= Mr

2C
e−2C(1+ε)1/rk1/r

→ 0 as k → ∞.

It remains to evaluate B
(1)
k . We choose an antiderivative of p̃ denoted by P̃ obtained by

formally integrating the Fourier series of p̃ (of which the average is zero). Integration

of p̃(kz) gives
1

k
P̃ (kz). Integration by parts gives

B
(1)
k = 1

k
P̃ (kz)k1/re2k1/r(1−(1+z)1/r)(1 + z)1/r−1

∣∣∣∣
ε

0

− 2k2/r−1
∫ ε

0
P̃ (kz)

{
−1

r
(1 + z)1/r−1e2k1/r(1−(1+z)1/r)(1 + z)1/r−1

}
dz

− k1/r−1
∫ ε

0
P̃ (kz)

{
e2k1/r(1−(1+z)1/r)(1/r − 1)(1 + z)1/r−2

}
dz
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which tends to 0 as k → ∞ provided

2

r
− 1 < 0, i.e., for r > 2

since
e2k1/r(1−(1+z)1/r) ≤ e−2Ck1/r (1+z)1/r → 0 as k → ∞.

For the case r < 2, we reiterate the preceding calculation. We can define successive
primitives of p̃, which we denote by

P̃1, P̃2, . . . , P̃n = P̃ ,

obtained by formally integrating the Fourier series of p̃ (whose average is zero). Suc-
cessive integration of p̃(kz) gives

1

k
P̃1(kz),

1

k2
P̃2(kz), . . . ,

1

kn
P̃n(kz), . . . .

We stop as soon as we have r >
n

n − 1
. With r > 1, we have the convergence to 0 of

the term

2k1/r

∫ ε

0
e2k1/r(1−(1+z)1/r)p̃(kz)(1 + z)1/r−1dz.

Finally,
ãr (x0) → −p̄ as x0 → 0, for every r > 1.

For more details concerning this proof, we refer to [3].
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