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Abstract-The aim of this paper is to present a computational procedure of an optimal approx- 
imation method for a nonlinear ordinary differential equation with excitation based on the mini- 
mization in the least-square sense. The approximation is of order two or higher with respect to the 
initial value. We provide an application which contained an example with two kinds of excitations: 
continuous and periodic. @ 2004 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

In [l-5] Benouaz and Arino have presented a computational procedure which yields a linear map 
defined as the optimal approximation of a nonlinear ordinary differential equation of the following 
form: 

F = F(z(t)), z(0) = 20. 

They have applied this method to some problems when the classical linearization cannot be 
used (behavior and stability of solutions). In particular, they have applied this procedure to a 
specific nonlinear ordinary differential equation for which they proved existence, uniqueness, and 
convergence of the optimal approximation associated with it. 

The work presented in [2,6-81 is based on the applicability of the proposed method to the study 
of the stability. 

In [9], they gave a necessary and sufficient condition for uniqueness of the elements of the 
sequence determined in the course of the optimal approximation and proved that the order is two 
or higher. 
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In this paper, we propose to extend this procedure to a nonlinear ordinary differential equation 
with excitation. This class encompasses various systems such as electronic circuits, mechanical 
systems, aerodynamical systems, and population dynamics systems. Our purpose is to study a 
system governed by a set of equations which can be written in the form [lo] 

f = J+(t), 4Q), x(0) = X0. 

We consider especially the decoupled (z,u) case. The excitation is denoted by u(t) Ill] (the 
external force which can be supplied for example by a photovoltaic generator). Our results are 
in the line of previous work by Vujanovic [12,13] and Jordan et al. [14-161. 

We give a brief overview of the contents. The next two sections are devoted to preliminaries 
and a general formalism with properties of the optimal procedure. In Section 4, the order of the 
approximation in the case of constant excitation is studied. 

Finally, we illustrate the applicability of the procedure through an exampIe. The resuhs are 
discussed using the calculus of the quadratic error. 

2. THEORETICAL FRAMEWORK 

2.1. Position of the Problem 

Consider the following system of nonlinear ordinary differential equations: 

wherex=(xr,... , 35,) is the unknown function, u = (ur, . . . , u,) is the external excitation which 
can be constant (continuous) or a function of time (periodic), and F = (fl, . . . , fn) is a given 
function on an open subset R of B”. Our purpose is to find a linear ordinary differential equation 
of the form 

dx - =Ax+Bu, 
dt 

x(0) = x0, (2) 
which has the same behavior as the nonlinear differential equation (l), both (equations (1) 
and (2)) have the same initial value. (&B) E &(R) are to be determined. For this, we 
shall assume the following. 

(Hl) F(O,O) = 0. 
(H2) The spectrum p(DF(x)) is contained in the set {Z : Re .a < 0} for every z # 0, in a 

neighborhood of 0, for which DF(x) exists. 
(H3) F is y Lipschitz continuous with respect to Z. 

System (2) will give an optimal approximation to system (l), starting from the initial value x0 
and going to the steady state as t goes to infinity. 

2.2. Formalism 

Consider the functional defined by 

G(A, B) = 
s 

+CQ IjF(x(t), u(t)) - Ax(t) - Bu(t)l12 dt, (3) 
0 

where F is defined on an open subset 0 of Iw”, (A, B) E Mn(IR) are to be determined successively. 
Here, x is just any function defined on 10, +co[, bounded, continuous, and such that (x,u) E 
Lr(0, +oo) and F(x(.), u(.)) E L1(O, +oo). Later on, we will consider a function x(t) that is the 
solution of a linear equation. This approach is the optimization in the least-square sense. The 
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existence and unity of the solution (A, B) in the least-square sense are guaranteed by the general 
theorems of approximation [17-211. 

Differentiating G(A,B) with respect to A along a function Z, and with respect to B along a 
function U, yields 

DG(A)a = 2 
/ 

+m(Ax(t) + Bu(t) - F(x(t), u(t)), ax(t)) dt, 
0 

DG(B)P = 2 
s 

+oO (4) 
(Ax(t) + Bu(t) - J%(t), u(t)), b(t)) dt, 

0 

for every matrix o and p. In particular, for matrices such that 

we have 

qm = 1; aij = 0, ,&la = 1; Pij = 0, if (4j) # (I, m), (5) 

J’ 

+a 
(Ax(t) + h(t) - F(x(t),u(t)),ax(t)) dt 

0 

= /+mLWi + Bu(t) - F(x(t), u(t))llxm(t> dt, 
0 

J’ 
+m(Ax(t) + Bu(t) - F(x(t),u(t)),Pu(t)) dt 

0 

(6) 

= j-+m[Ax(t) + Bu(t) - F(x(t),u(t))]nm(t) dt. 
0 

First, assuming that A minimizes (3) along a given function x, the above quantities are equal to 
zero, i.e., 

+m[Ax(t) + Bu(t) - F(x(t),u(t))]lx,(t) dt 
> 

= 0. 
v l<l,m~n 

Let (a,j) denote the elements of matrix A and (bij) those of matrix B, then (6) yields 

fW 
xj (t)xCm(t) dt + & 

l<j,m<n (S 

+CO 
y(t)xm(t) dt 

0 - ) 1 l<j,77I<lL 

fz(x(t), u(t))xm(t) dt 
l<j,m<n 

Let 

rA(X) = 
s 

+m[x(t)][x(t),T dt = +03 xj(t)x,(t) dt 
0 > l<j,m<n ’ 

@A('& x) = l+m[u(t)][x(t)]Tdt = (l+mq(t)xm(t)dt) 
l<j,m<n ’ 

then, 

*A(x,U) = 
s 

+m[F(x(t), 4t))l[x(t)lT dt, 
0 

A~,J(x) + B@A(u, x) = @~(x, IL) 

(7) 

(8) 

(9) 

(10) 
Assuming that B minimizes (3) along a given function U, the system of equations (6) is equal to 
zero, i.e., 

+a;:[Ax(t) + h(t) - F(x(t),u(t))]pm(t) dt 
> 

= 0. (11) 
v l<l,m<n 
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The system of equations (6) yields 

Denoting 

rB(u) = J +=&)][u(t)lT dt = +O” y(t)um(t) dt 
0 (I 0 > Kj,m<n ' 

QB(X,U) = $ +w[x(t)][u(t)]T dt = +O” xj(t)u,(t) dt 
0 (s 0 > l<_j>mln ' 

@B(X, u) = J +=bW), WIWIT dt, 
0 

(13) 

we obtain 
A@‘B(x, u) + H-B(U) = a&x, u). (14) 

Equations (10) and (14) allow us to write the matrices A and B as follows: 

A = [QA(x,U) - (B)~A(21,xc>][rA(rc)]-‘, 

B = PB(x,u) - (A)~,~(x,u)l[r~(~)l-‘. (15) 

we have implicitly assumed that matrices rA and rB are nonsingular and consequently A and B 
are uniquely defined if r&) and rg(‘lL) are invertible. 

2.3. Procedure 

DIAGRAM OF THE LEAST-SQUARE APPROXIMATION PROCEDURE. The diagram of the least- 
square approximation procedure is given in Figure 1. 

Nonlineax 

classical Linearization 

El 
......... 

......... / , :i- ‘“:“:; p 
i ............................................................................................ 

1 

Figure 1. Diagram of the least-square approximation procedure. 
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ALGORITHM. The computation presented above will be used iteratively. We shall assume that 
the successive matrices Aj and Bj are stable, their spectrum lies in {Z : Re z < O}. Verifying this 
fact is a delicate problem. We have given conditions that ensure that this property is satisfied. 
These results will be developed subsequently. The initial matrices A0 and Bo are the Jacobian 
matrices of F at ~0 such that DF(z) exists, and at ZLO such that DF(u) exists, respectively, ~0 
and ue are the initial values of z and U. 

Consider system (1). The computational procedure can be summarized as follows. 

STEP 1. Compute 

Ao = DF(zo), Bo = DF(u0). 

STEP 2. Compute Al and B1 from the solution of equation 

dy 
- = Aoy(t) + Bow(t), 
dt Y(O) =x0, (16) 

which is 

y(t) = P0ZO + 
J 

t d-A0 Bov(s) ds, (17) 
0 

by minimizing the functional 

G(A, B) = J +a~ IIF(y(t), v(t)) - Ay(t) - Bw(t)l12 dt. 
0 

(18) 

Al and B1 are uniquely determined by system (15), where 3: is replaced by y and w(t) is the 
excitation at time t. 

From this point on, the matrices determined by the procedure are no longer Jacobian matrices 
of F at a given point. In order to continue, it is necessary that the above conditions be satisfied 
at each step. 

Let us first assume that this holds. Then, the procedure works as follows. 

STEP 3. Assuming that Al,. , A,-1 and B1, . , B,-1 have been computed, to compute A, 
from A,-1 and Bj from Bj-1, we first solve 

$ = [-&I)] y(t) + [+I,] v(t), 

The solution yj of this equation is 

y(O) = 20. (19) 

yj(t) = etA(J-l)xO + J t e(t-s)A(J-l) B~,-l)vj(s) ds. (20) 
0 

The minimization of the functional 

J +m G,(A, B) = IlF(yj(t),~j(t)) - Ayj(t) - &i(t)l12dt (21) 
0 

gives 

k&i] = [ J+~[~(y3(t),~~(t))l[y~(~)l~dt- (WWJ>YJ~] RYJ-~> 
0 

(22) 

(23) 

If the sequences (Aj , Bj) converge, then the limit (A, fi) is by definition the optimal approxima- 
tion of F(z(t), u(t)) at (~0, u). The optimal matrices depend on x0. 



478 T. BENOUAZ AND F.BENDAHMANE 

3. PROPERTIES OF THE PROCEDURE 
We will now consider the situations where the procedure converges. 

3.1. Case Where the Application F is Linear 

If F is linear, then the procedure gives A and B at the first iteration. The optimal approxi- 
mation of a linear system is the system itself. 

3.2. Case Where the System is the Sum of Linear and Nonlinear Terms 

STEP 1. Consider the nonlinear system with a nonlinearity of the form 

J%(t), G)) = Mz(t) + F*Mt), 4t)), 

where M is linear. 
Using equations (10) and (14)) we obtain for Al and Bi , 

AI~A(~) + &@A(U,x) = /+a[Wt) +F*(s(t),u(t))][z(t)lT dt, 
0 

BII’B(u) + AI@B(x,u) = /+m[Mz(tj + F*@(t), u(t))][u(t)lT cit. 
(25) 

0 

The computation of the matrices Al and B1 gives 

AI = M + [*;(x,u) - BI@A(%~)][~A(~)]-~, 

B1 = [M@~(v)][b(u)]-~ + [Q;(x,u) - &b(w)l[rdu)l-l, 
(26) 

with 

Hence, 

@>(cc,u) = J +m[F’(,(t),~(t))l[,(t)lT & 
0 

q&, u) = J +mP*(dt), Wl[41T dt. 
0 

Al = M+A;, 

BI = [M+B(~, 41[b(41-1 + Bf, 

(27 

where 
A; = [q&d - &@A(V$][rA(2)]-1, 

BT = [Q;(v) - hb(w41[r~(41-1. 

Then, for all j, we have 
Aj = M+A;, 

where 

Bj = [Mfb(rc,u)][I’g(u)]-l + B;, 

A; = [q(Z, U) - Bj@A(% x)][rA(d]-lT 

B; = [Q;(cc,u) - AjcPg(z,u)][I’g(u)]-l. 

STEP 2. Consider the nonlinear system with a nonlinearity of the form 

F@(t), u(t)) = F*(z(t), 4t)) + W), 

where L is linear. Using equations (10) and (14), we obtain, for Al and Bl, 

(28) 

(29) 

(30) 

(31) 

(32) 

AIrA + B~@A(u,x) = Jtm[F*(x(t),u(t)) + Lz(t)][z(t)lT dt, 
0 

BlrB(u) + AI+&,u) = /+m[F*(4t)4t)) + Ldt)]b(t)lT dt. 
0 

(33) 
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The computation of the matrices A1 and Br gives 

Al = [@;(x> ~1 - BI@‘A(u, 4[L4W1 + [~%(wdl[Lt(~N-l, 
BI = [%(z,u) - AAs(w)][JX~)]-~ + L, 

with 

J’ 

tm 

q(cr,u) = [F*(dt), 4m4t)lT d4 
0 

s 
q&,u) = +w IF” (4t),4t))l [441T f& 

0 

Hence, 

(34) 

(35) 

where 

Al = AT + [L@a(~,~)l[~~(~)l-~, 

Bl = B; + L, (36) 

A; = [Q>(? u) - ~1cd~,41~rxW, 

BT = [Q;(x,u) - ~1@.Bb,~)][r&41-‘. 
(37) 

Then, for all j, we have 

where 

Aj = A; + [L~~(~lL,~)l[r.&)l-l, 

Bj=B;+L, (38) 

A; = [Q;(~,~) - Bj@&v)l[r.&)l-‘, 

B;‘= [QJ;(x,u) - Aj@‘B(x,u)][rl?(u)]-l. (39) 

In particular, if some components of F are linear, then the corresponding components of F* are 
zero, and the corresponding components of A, and Bj are those of F. 

4. ORDER OF THE APPROXIMATION 

We will now evaluate the functional 

G(A, B) = 
J’ 

o+m Ilf(~(t)> v(t)) - AY(~) - BWl12 4 (40) 

where (A, B) are any matrices. Starting from arbitrary matrices (Ao, Bo), the first matrices 
(Al, B1) obtained in the optimal procedure minimize the functional 

/’ 

+cO 
IIF(yo(t)>4t)) - AYO(~) - %t)l12 4 (41) 

0 

where ye(t) is the solution of the system 

s = Aov(t) + Bo4t), Y(O) = x0. 

We have the following relationship between (Al, B1) and (A, B): 

(42) 

s 
+CO lIF(~o(t), v(t)) - AIYO(~) - B&II2 dt I / 

+oO 
IIF(Yo(Q v(t)) - AYO(~) - Bv(t)l12 dt. (43) 

0 0 

Then, between (Aj, Bj) and (A, B), we have 

.I 

+m 
lIF(yj(%v(t)) - (h+l)yj(t) - (Bj++(t)112dt 

0 

< - I+-= IP(yj(tL4t)) - 4/j(t) - Wt)l12dt, 
0 

(44 
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where 

~j(t) = e %-~)xo + 
J 

t e(t-“)A(j-l)B(j_l)w(s) ds (45) 
0 

is the solution of the system 

2 = [A(j-I)] Y(t) + [qj-I)] 4% 

In the limit (j + +oo), we obtain 

Y(O) = 20. (46) 

+=I 
J II 

F@(t),+)) - &7(t) - ljw(t)ll’ dt 5 s’” IIF (y(t), v(t)) - AC(t) - Bv(t)l12 dt, (47) 
0 0 

where 

is the solution of 

so, 

J 

t 

Q(t) = etAxO + e(t-S)A&(s) ds 
0 

2 = &j(t) + &J(t), Y(O) = 20. 

/-Cm I(F(g(t),w(t)) - &j(t) - &(t)l12 dt 
0 

= inf 
[I 

+CO IIF(jj(t),w(t)) - Ajj(t) - Bv(t)lj2 dt . 
V@,WEMn(W o 

R~cT(A,B)E]-co,O[ 
I 

Now, consider the case 

2 = F(x(t)) + constant, 

which is possible if w(t) is constant. In this case, the function w(t) can be written 

v(t) = [W(t), 

where E is a constant, independent of time and H(t) is the Heaviside function 

H(t) = 
1, if t 2 0, 

0, if t < 0. 

Hence, 

+CO 
J II 0 

%(t)) - &(t)/I’ dt I 1’” IIF( - Ay(t)l12 dt, 
0 

in particular, for A = DF(O), we have 

+03 J 11 0 
F@(t)) - &(t)112 dt I I+==’ jIqy(t)> - DF(0)y(t)JJ2 dt. 

0 

With the assumptions @(t)II I Cllrcoll and [IF(z) - DF(O)zll = 0(llzl12), we obtain 

J+‘= IIqs,, - &(t)l12 dt I 0 (IIQI~“)~ 
0 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

We will now evaluate the difference 11x(t) - jj(t)II w h ere x is the solution of equation (1) and g 
that of the optimal linear equation, both having the same initial value. We have 

- - dy dx 
- = F(x(t)) - &j(t) = F(x(t)) - F@(t)) + F@(t)) - &T(t). 

dt dt (56) 
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From Assumption (H3) in Section 2.1, we have 
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and using the Gronwall’s lemma, we obtain 

For every T > 0, there exists M 2 0 such that 

Ildt) - ixt)ll 5 Ad (11~011”) 7 for 0 5 t < T, (59) 

and every xc in the neighborhood of 0, independent of T. 
The proposed approximation is of order two or higher with respect to the initial value. More 

generally, it has the same order as the nonlinearity. 

5. APPLICATIONS 

We present first the computational procedure of the least-square approximation. 

5.1. Computational Procedure 

The computational procedure is based on the algorithm presented in Section 2.3.2, and written 
in Fortran language. The differential equations have been solved using the fourth-order Runge- 
Kutta method [22]. 

INPUT. [x0, U, Ao, Bo, E]. 

LEVEL 1. Computation of Al in terms of A0 and Br in terms of Bu 

[I 
.+‘X 

A(l) = [F(yl(t),~(t))l[Yl(t)lT dt - B(l) o [~+~wlIYdw dt]] 

[J 
-1 

X o+~~y~~~Ny~OIT dt] > 

[J’ 

+oO 
B(I) = [F(Yl(t),~(t))li~(t)lT dt - A(l) 

0 [i’ 
o+~~ydt)l’(lIT dt 

[I 
-1 

X +O" [4t)l [4t)lT dt , 
0 1 

where 

yl(t) = ebA(lIGg + 
I 

t e(t--s)Ao B,u(s) ds 
0 

LEVEL 2. Computation of AC,) in terms of Acjpl) and Bcj, in terms of Bc,-~) 

4, = [I +~[F(Y,(t),~(t))l[Yj(t)l’dt - B(j) o [I 
(ii- b(t)1 [YAW dj] 

-1 

X ! 

[I 

+a 
B(J) = jF(2/j(t),u(t))l[~(t)lT dt - 4,) o [.I 

o+m IY,, (t)l bW dq] 

[I 
-1 

X o+7wIwT dt] ? 

(61) 

(62) 

(63) 

(64) 
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where 

LEVEL 3. Computation of 

IIh - 4-l) II T 
II%) - %-l) II . 

(65) 

(66) 
(67) 

LEVEL 4. If 

II-%, - 4-l) II < E, (68) 
II%) - 4-l) II < ET (69) 

where E is the desired level of approximation, then set 2 = Acj) and B = Bc,). (A, B) constitutes 
the optimal approximation of F at (zre,~). Else, set AU-~) = AC,), Bcj-r) = Bc,) and go to 
Level 2. 

5.2. Example 

Since the main purpose of the following simple application is to illustrate the usefulness of the 
theory presented in the above sections, we have chosen to study the time evolution of an electrical 
circuit (Figure 2) containing a diode whose characteristic (i, v) is nonlinear [23]. 

r-j-T--j 
Figure 2. Electronic circuit where a nonlinear diode is the source of excitation. 

The model of the diode can be written 

1 UW-tbW2, ‘u i f(w) 1 0, = = 
0, 21 < 0, 

a and b are constants. The state equations can be written 

dx E R 1 
z=_L-,X--Y, 

dy 1 a b, (70) 
z=cx-cY-cY i (x0, Yo) = (O,O), 

where x = in is the self current, y = UC is the potential drop in the condenser, and u(t) = E/L. 
The parameters of the circuit are 

R = lOOR, a = 3.5 x 10m3 A/V, 

C = 5.10-6 F, b = IIO-~ A/V2, 

L = 0.5 x 1O-3 H. 
(71) 
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Case where the excitation is constant (continuous) 

In this case the source of excitation is 

E = 20V. 

System (70) is as follows: 

dx 
- = -2 x 105x - 2 x 103y + U(t), 
dt 
4 - = 2 x 105x - 7 x 102y - 2 x 103y2, 
dt (X0> Yo) = (0, Q), 

(72) 

where 

u(t) = $1) = [4oooo]H(t), 

H(t) is the Heaviside function. 
The linearization of F at (~0, yo) = (0,O) gives 

DF(xo, YO) -2 x 105 -2 
x 

10” 
1 0 

= 2 x 105 = -7 and x 102 1 IIF [ 0 0 1 (75) 

After ten iterations, the computational procedure gives (E = 10P6) 

A= -2 x 105 -2 x 103 
2.5033 x lo5 -0.1042 x lo3 1 and 

and we obtain 

(76) 
i [I [ -2 x 105 -2 x lo3 I[ x 1 0 

j, = 2.5033 x lo5 -0.1042 x lo3 y + o o 4th [ 1 (77) 

REMARK 1. Note that the first equation of the nonlinear system (73) remains without changes 
after least-square approximation. 

Table 1 shows the value of the solution of systems (73) and (77) and the quadratic error. The 
quadratic error is defined by 

Er = 2 IIY - Yl12, (78) 
i=l 

where y is the solution of the nonlinear system and i the solution of the optimal system. 
Figures 3-5 represent, as a function of time, respectively, the excitation u(t), the graphs of 

the solutions (x(t), y(t)) of systems (73) and (77), and the quadratic error between the nonlinear 
system (73) and the optimal linear system (77). 

Table 1. Values of the solution at time t E [O,T] of the nonlinear system (73) and 
the optimal linear system (77) and the quadratic error Er. 

t x nl(t) 

0 0 

lE-04 1.724223-01 

2E-04 1.634033-01 

3E-04 1.61904E-01 

4E-04 1.616763-01 

5E-04 1.616423-01 

6E-04 1.615053-01 

7E-04 1.615523-01 

8E-04 1.615773-01 

SE-04 1.61594E-01 

lOE-04 1.614393-01 

X lin(t) Y nl(t) 

0 0 

1.731063-01 2.847063+00 

1.644723-01 3.675733+00 

1.621183-01 3.818033+00 

1.61492E-01 3.84306E+OO 

1.613403-01 3.846883+00 

1.613073-01 3.847683+00 

1.613063-01 3.847733+00 

1.61186E-01 3.847723+00 

1.612053-01 3.847703+00 

1.61261E-01 3.847883+00 

Y lin(t) Er 

0 0 

2.763273+00 7.133-003 

3.576153+00 l.OlE-002 

3.792383+00 6.683-004 

3.850153+00 5.293-005 

3.865653+00 3.63E-004 

3.869863+00 5.00E-004 

3,87099E+OO 5.523-004 

3.871453+00 5.823-004 

3.871513+00 5.853-004 

3.87146E+OO 5.643-004 
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Figure 3. Excitation u as a function of time u(t) = [40000]H(t). 

- Curve (1) 

o,oooo 0,0004 

Time (s) 
0,0008 

Figure 4. Variation of z(t) and y(t) as a function of time for the initial conditions 
(~0, yo) = (0,O). Curve (1) corresponds to the solution of system (73). Curve (2) 
corresponds to the solution of system (77). 
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- Curve (2) 

0,012 

0,010 

0,008 

0,006 

E a 
0,004 
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0,000 

0,0008 

Time (s) 
Figure 4. (cont.) 

-- Quadratic Error 

v-a--I--- 

l 1 I I 

I 

o,oooo 0,0002 0,0004 0,0006 0,0008 0,0010 

Time (s) 
Figure 5. The quadratic error as a function of time between the nonlinear system (73) 
and the optimal linear system (77). 

Case where the excitation is periodic 

Now, we consider the case when the source of excitation is 

E = Eocos(wt). 

I30 = 0.2V and w = 100~. 

(79 
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System (70) can be written 

where 

dx 
dt- 

- -2 x lo52 - 2 x 103y + u(t), 

& - = 2 x lo52 - 7 x 102y - 2 x 103y2, 
dt 

u(t) = gqt) = [400cos(1007rt)]H(t), 

H(t) is the Heaviside function. 
The linearization of F at (20, yo) = (0,O) gives 

(80) 

(81) 

DF(xo,~o) ;2xxl$5 -2 x 103 1 = -7 x 102 1 ’ and IIF = [ 0 0 1 0. (82) 

After nine iterations, the computational procedure gives (E = 10C6) 

A= 
[ 

-1.2419 x 105 -2.28346 x lo3 
1.97255 x 105 -6.8753 x lo2 I, ’ 

and B= l O 
[ I 0 0 ’ (83) 

and we obtain i [I [ -1.2419 x 105 -2.28346 x lo3 
?j = 1.97255 x 105 -6.8753 x lo2 ] [j + [:, ;]m (84) 

Table 2 shows the solutions of systems (80) and (84) and the quadratic error (78). Figures 6-8 
represent, as a function of time, respectively, the excitation u(t), the graphs of the solutions 
(x(t),y(t)) of systems (80) and (84), and the quadratic error between the nonlinear system (80) 
and the optimal linear system (84). 

Table 2. Values of the solution at time t E [O,T] of the nonlinear system (80) and 
the optimal linear system (84) and the quadratic error Er. 

t X nl(t) X lin(t) Y nl(t) Y lin(t) Er 

0 0 0 0 0 0 

0.5E-02 -1.599723-04 -1.96094E-04 1.625363-02 1.079343-02 3.023-005 

l.OE-02 -3.499123-04 -5.278103-04 -1.650703-01 -1.46489E-01 3.523-004 

1.5E-02 1.814073-04 1.950203-04 -1.850783-02 -1.097643-02 5.69E-005 

2.OE-02 6.653813-04 5.285383-04 1.335153-01 1.464663-01 1.71E-004 

2.53-02 -1.593503-04 -1.943603-04 1.668513-02 1.121733-02 3.023-005 

3.OE-02 -3.508263-04 -5.283883-04 -1.649643-01 -1.464663-01 3.483-004 

3.53-02 1.805683-04 1.927273-04 -1.887413-02 -1.153393-02 5.403-005 

4.OE-02 6.654743-04 5.286963-04 1.334753-01 1.464473-01 1.71E-004 

4.53-02 -1.567463-04 -1.931703-04 1.69615E-02 1.148573-02 3.033-005 

5.OE-02 -3.515463-04 -5.292263-04 -1.648673-01 -1.464133-01 3.473-004 

5.53-02 1.784553-04 1.91591E-04 -1.944253-02 -1,19050E-02 5.703-005 

6.OE-02 6.654393-04 5.291903-04 1.334313-01 1.46408E-01 1.723-004 

6.53-02 -1.548733-04 -1.912403-04 1.746113-02 1.195213-02 3.073-005 

7.OE-02 -3.519453-04 -5.297093-04 -1.647763-01 -1.463893-01 3.443-004 

7.53-02 1.761863-04 1.895583-04 -2.007843-02 -1.228703-02 6.093-005 

8.OE-02 6.659383-04 5.302493-04 1.333863-01 1.463563-01 1.71E-004 

8.53-02 -1.532633-04 -1.892433-04 1.788073-02 1.257373-02 2.853-005 

9.OE-02 -3.532123-04 -5.295143-04 -1.647103-01 -1.463513-01 3.433-004 

9.5E-02 1.748073-04 1.892593-04 -2.054783-02 -1.283383-02 5.973-005 

l.OE-01 6.663723-04 5.306403-04 1.333373-01 1.463103-01 1.71E-004 
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-500 
-0,04 -O,O? 0,oo 0,02 0,04 0,06 0,08 

Time (s) 
Figure 6. Excitation u as a function of time u(t) = [400cos(1007rt)]H(t). 
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*$3‘ 
- 0,001 
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-0,001 
0,oo 0,Ol 0,02 0,03 0,04 0,05 

Time (s) 
Figure 7. The variation of z(t) and y(t) as a function of time for the initial conditions 
(eo,yo) = (0,O). Curve (1) corresponds to the solution of system (80). Curve (2) 
corresponds to the solution of system (84). 
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Figure 7. (cont.) 
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--I- Quadratic Errol 
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Figure 8. The quadratic error as a function of time between the nonlinear system (80) 
and the optimal linear system (84). 
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6. CONCLUSION 

As a continuation of earlier papers [3], we have presented in this work further developments 
regarding the extension of the optimal linearization. The emphasis here was put on the use of 
the method as an approximation procedure of a nonlinear O.D.E. with excitation. 

Our main results stipulate that the approximation is of order two with respect to the initial 
value, and is generally of the same order of the nonlinearity. 

The example presented satisfactory adequacy of approximate results compared to the exact 
ones. This is confirmed by the computation of the quadratic error which never cxcccds 1.1% in 
the first case. In the second case) the quadratic error order is 0.05%. 
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